US009081701B1

a2 United States Patent 10) Patent No.: US 9,081,701 B1
Northcott et al. 45) Date of Patent: Jul. 14, 2015
’
(54) SYSTEMS AND METHODS FOR DECODING 6,651,212 Bl 11/2003 Katayama et al.
DATA FOR SOLID-STATE MEMORY 6675318 Bl 112004 Lee
6,731,538 B2 5/2004 Noda et al.
. . 6,732,322 Bl 5/2004 Miyauchi et al.
(71) Applicant: PMC-Sierra, Inc., Sunnyvale, CA (US) 6.732325 Bl 52004 TaS}}]I ot al.
. 6,751,766 B2 6/2004 Guterman et al.
(72) Inventors: Philip Lyon Northeott, Coquitlam (CA); 6,839,870 B2 1/2005 Fanfelle
Peter Graumann, Calgary (CA); 6,871,303 B2 3/2005 Halter
Stephen Bates, Canmore (CA) 6,895,543 B2 5/2005 Hazama
7,061,804 B2 6/2006 Chun et al.
. . 7,184,356 B2 2/2007 Noguchi et al.
(73) Assignee: PMC-Sierra, Inc., Sunnyvale, CA (US) 7380465 B2 6/2008 Rai(ue ot al.
. . o . 7415651 B2 82008 Argon
(*) Notice: Subject to any disclaimer, the term of this 7,451,383 B2 11/2008 Kim et al.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 221 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/844,474
Jp 2000149592 5/2000
(22) Filed: Mar. 15,2013 KR 100766042 10/2007
(51) Int.Cl (Continued)
G11C 29/00 (2006.01) OTHER PUBLICATIONS
HO03M 13/00 (2006.01)
GO6F 11/10 (2006.01) USPTO; Office Action dated Jan. 2, 2014, from related U.S. Appl.
(52) US.CL No. 13/477,600, filed May 22, 2012.
CPC .o, GO6F 11/1008 (2013.01) (Continued)
(58) Field of Classification Search
None . Primary Examiner — Justin R Knapp
See application file for complete search history. (74) Attorney, Agent, or Firm — Knobbe Martens Olson &
Bear LLP
(56) References Cited

U.S. PATENT DOCUMENTS

4,112,502 A 9/1978 Scheuneman

5,404,485 A 4/1995 Ban

5,592,497 A 1/1997 Lokhoff

5,942,004 A 8/1999 Cappelletti

5,956,743 A 9/1999 Bruce et al.

5,974,544 A 10/1999 Jeffries

6,023,781 A 2/2000 Hazama

6,279,133 Bl 8/2001 Vafai et al.

6,279,830 Bl 8/2001 Ishibashi

6,574,774 Bl 6/2003 Vasiliev

6,591,394 B2 7/2003 Lee et al.

6,628,723 Bl 9/2003 Gerlach et al.
Page Stripe : Logical Block Read LSOZ
Read Reguest ‘ Regquast -~

(57) ABSTRACT

Apparatus and methods provide relatively low uncorrectable
bit error rates, low write amplification, long life, fast and
efficient retrieval, and efficient storage density such that a
solid-state drive (SSD) can be reliably implemented using
various types of memory cells, including relatively inexpen-
sive multi-level cell flash. One embodiment intelligently
coordinates remapping of bad blocks with error correction
code control, which eliminates the tables used to avoid bad
blocks.

20 Claims, 16 Drawing Sheets

N
608 i
| Logical/Physical Address | 604
i Map ~
| Gear and Fiash State 606
gl Lookup Table d
618
610 i Read Data and ‘ Re-ead data |
S Corresponding Parity ‘ with different parameters |
1
6 1\2 | A-prio error likeliood Updste error likellood | 622
+ estimation (LLRs}) estimations (LLRs)
614 Primary Decode /624
| 626 No

Correction performed No

N | Correction performed
~r with High Confidence? | Ng

with High Confidence?

Stopping Criterion J» /625
Reached?

""" Yes| ﬁ‘ves

_4: Release Comactad Dats to Requasting Process

l Yes

630
Pass to Grid Decoder

US 9,081,701 B1
Page 2

(56)

7478314
7,545,689
7,643,342
7,739,576
7,783,955
7,809,900
7,844,879
7,860,200
7,904,619
7,904,672
7,904,780
7,944,748
7,962,831
8,046,542
8,051,358
8,065,583
8,090,980
8,145,855
8,255,620
8,335,951
8,347,138
8,392,791
8,402,217
8,433,979
8,464,095
8,495,465
8,560,881
8,612,680
8,621,318
8,689,082
8,713,245
8,713,411
8,725,944
8,750,042
8,788,910
8,793,556
2002/0120820
2002/0159285
2003/0088821
2003/0112879
2003/0156454
2004/0268065
2005/0114587
2006/0221752
2007/0061689
2007/0124647
2007/0171714
2007/0171730
2007/0233752
2007/0266295
2007/0266296
2007/0277066
2008/0010582
2008/0034272
2008/0126680
2008/0137414
2008/0163023
2008/0168319
2008/0172589
2008/0294960
2008/0320361
2008/0320373
2009/0013233
2009/0013234
2009/0037627
2009/0070651
2009/0100307
2009/0113115
2009/0132889
2009/0164836
2009/0182939
2009/0327589
2009/0327840
2010/0008214
2010/0023800

References Cited

U.S. PATENT DOCUMENTS

Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
Bl
B2
Bl
Bl
B2
B2
B2
B2
B2

BL*

Bl
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

1/2009
6/2009
1/2010
6/2010
8/2010
10/2010
11/2010
12/2010
3/2011
3/2011
3/2011
5/2011
6/2011
10/2011
11/2011
11/2011
1/2012
3/2012
8/2012
12/2012
1/2013
3/2013
3/2013
4/2013
6/2013
7/2013
10/2013
12/2013
12/2013
4/2014
4/2014
4/2014
5/2014
6/2014
7/2014
7/2014
8/2002
10/2002
5/2003
6/2003
8/2003
12/2004
5/2005
10/2006
3/2007
5/2007
7/2007
7/2007
10/2007
11/2007
11/2007
11/2007
1/2008
2/2008
5/2008
6/2008
7/2008
7/2008
7/2008
11/2008
12/2008
12/2008
1/2009
1/2009
2/2009
3/2009
4/2009
4/2009
5/2009
6/2009
7/2009
12/2009
12/2009
1/2010
1/2010

Cheong et al.
Ilkbahar et al.
Litsyn et al.
Radke

Murin

Danilak
Ramamoorthy et al.
Furman et al.
Danilak
Danilak
Brandman
Eggleston et al.
Park et al.
Radke

Radke

Radke

Danilak

Wan et al.
Frost et al.
Becker et al.
Moshayedi
Saliba et al.
Burd

Blaum et al.
Bonwick ...ooovviiiiiiinan 714/6.2
Anbholt et al.
Frost et al.
Madnani et al.
Micheloni et al.
Oh et al.

Frost et al.
Kong et al.
Burd

Sharon et al.
Northcott ..coovvvvvvennnns 714/773
Northcott et al. 714/773
Higuchi et al.
Morley et al.
Yokokawa et al.
Antia et al.

Wei et al.
Hilton et al.
Chou et al.
Fasoli et al.
Park et al.
Chen et al.

Wu et al.
Ramamoorthy et al.
Bangalore et al.
Conley

Conley
Gajapathy et al.
Nieto et al.

Wu et al.

Lee et al.

Park et al.
Hong et al.

Lee et al.
Gallezot et al.
Sharon et al.
Fukuda et al.
Kim et al.
Radke

Radke
Rofougaran
Diggs et al.
Lee

Nazarian et al.
Radke
Carmichael
Hluchyj et al.
Moshayedi
Moshayedi
Siaud et al.
Harari et al.

2010/0115376 Al 5/2010 Shalvi et al.
2010/0122016 Al 5/2010 Marotta et al.
2010/0142756 Al* 6/2010 Fieldsetal. 382/100

2010/0199153 Al 82010 Okamura et al.
2010/0281341 Al 112010 Wu et al.
2010/0332894 Al 12/2010 Bowers et al.
2010/0332922 Al 12/2010 Chang
2011/0019475 Al 1/2011 Moshayedi
2011/0029716 Al 2/2011 Moshayedi
2011/0038203 Al 2/2011 Camp et al.
2011/0040926 Al 2/2011 Frost et al.
2011/0060969 Al 3/2011 Ramamoorthy et al.
2011/0072196 Al 3/2011 Forhan et al.
2011/0167199 Al 7/2011 Danilak
2011/0167319 Al 7/2011 Jeddeloh
2011/0213920 Al 9/2011 Frost et al.
2012/0072680 Al 3/2012 Kimura et al.
2012/0089767 Al 4/2012 Leeetal
2012/0110417 Al 5/2012 D’Abreu et al.
2012/0260146 Al 10/2012 Leeetal.
2012/0311406 Al 12/2012 Ratnam et al.
2013/0060565 Al 3/2013 Nair et al.
2013/0073895 Al 3/2013 Cohen
2013/0080862 Al 3/2013 Bennett
2013/0151914 Al 6/2013 Cadigan
2013/0173955 Al 7/2013 Hallak et al.
2013/0179754 Al 7/2013 Cherubini et al.
2013/0246891 Al 9/2013 Manning et al.

FOREIGN PATENT DOCUMENTS

WO WO 2004062113 7/2004

WO WO 2006070668 7/2006

WO WO 2007084751 7/2007

WO WO 2012047500 Al 4/2012

WO WO 2012075200 A2 6/2012
OTHER PUBLICATIONS

USPTO; Office Action dated Dec. 31, 2013, from related U.S. Appl.
No. 13/477,598, filed May 22, 2012.

USPTO; Office Action dated Jan. 15, 2014, from related U.S. Appl.
No. 13/477,568, filed May 22, 2012.

USPTO; Office Action dated Jan. 21, 2014, from related U.S. Appl.
No. 13/477,633, filed May 22, 2012.

U.S. Appl. No. 13/477,600, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,633, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,629, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,598, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,595, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,568, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,599, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,845, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,635, filed May 22, 2012, Philip L. Northcott.
U.S. Appl. No. 13/477,601, filed May 22, 2012, Philip L. Northcott.
Daneshgaran, et al.; “An extensive search for good punctured rate-k/
(k+1) recursive convolutional codes for serially concatenated convo-
lutional codes,” Information Theory, IEEE Transactions on, vol. 50,
No. 1, pp. 208-217, Jan. 2004.

Frenger, et al.; “Rate-compatible convolutional codes for multirate
DS-CDMA systems,” Communications, IEEE Transactions on, vol.
47, No. 6, pp. 828-836, Jun. 1999.

Intel Corporation; Understanding the Flash Translation Layer (FTL)
Specification, Application Note AP-684; retrieved from the Internet
<URL: http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel %620TR-
Understanding%20the%20flash%20translation%20 layer%20%
28FTL%29%20specification.pdf>; Dec. 1998; retrieved Jan. 26,
2012; Intel Corporation.

Jim Handy; Does MLC Flash Belong in Enterprise SSDs; retrieved
from the Internet <URL: http://www.infostor.com/index/articles/dis-
play/3214572139/articles/infostor/volume-14/issue-1/special -re-
port/does-mlc_ flash belong html>; Feb. 1, 2010; retrieved on Jan.
24, 2012.

US 9,081,701 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

Ohtsuki, T.; “Rate adaptive indoor infrared wireless communication
systems using repeated and punctured convolutional codes,” Com-
munications, 1999.ICC *99. 1999 IEEE International Conference on,
vol. 1, no., pp. 609-613 vol. 1, 1999.

Sandforce; Product Brief SF-1500 Enterprise SSD Processors;
retrieved from the Internet <URL: http://www.sandforce.com/
userfiles/file/downloads/LSI SandForce 1500ENT_ PB_120104.
pdf>; 2012; retrieved Jan. 24, 2012; LSI Corporation; Milpitas, CA.
Sandforce; Product Brief SF-2500 & SF-2600 Enterprise SSD Pro-
cessors; retrieved from the Internet <URL: http://www.sandforce.
com/userfiles/file/downloads/L.SI__SandForce_ 2500-2600ENT__
PB_120104.pdf>; 2012; retrieved on Jan. 24, 2012; LSI
Corporation; Milpitas, CA.

Sandforce; RAISE Improves Total SSD Reliability; retrieved from
the Internet <URL: http://sandforce.com/index.php?id=174
&parentld=3>; 2012; retrieved on Jan. 24, 2012.

Sandforce; SandForce SSD Processors Transform Mainstream Data
Storage; retrieved from the Internet <URL: http://www.sandforce.
com/userfiles/file/downloads/SFI_Launch_ PR Final.pdf> Apr.
13, 2009; retrieved on Jan. 24, 2012; Saratoga, CA.

Zhou, et al.; “High rate turbo code using unevenly punctured convo-
lutional constituent code,” Communications, 1999. APCC/OECC
’99. Fifth Asia-Pacific Conference on . . . and Fourth Optoelectronics
and Communications Conference, vol. 1, no., pp. 751-754 vol. 1,
1999.

STEC; Engineering MLC Flash-Based SSDs to Reduce Total Cost of
Ownership in Enterprise SSD Deployments; retrieved from the
Internet <URL: http://www.stec-inc.com/downloads/whitepapers/
SAFE_WPpdf>; 2011; STEC, Inc.; retrieved on Jan. 24, 2012.
STEC; STEC Secure Array of Flash Elements Technology Improves
Reliability of Enterprise-Class SSDs; retrieved from the Internet
<URL: http://www.stec-inc.com/downloads/whitepapers/SAFE__
WP.pdf>; 2011; STEC, Inc.; retrieved on Jan. 24, 2012.

USPTO; Office Action dated Jul. 24, 2013, from related U.S. Appl.
No. 13/477,635, filed May 22, 2012.
USPTO; Office Action dated Feb. 14, 2014, from related U.S. Appl.
No. 13/477,595, filed May 22, 2012.
USPTO; Office Action dated Feb. 28, 2014, from related U.S. Appl.
No. 13/477,599, filed May 22, 2012.
USPTO; Office Action dated Mar. 4, 2014, from related U.S. Appl.
No. 13/477,845, filed May 22, 2012.
USPTO; Office Action dated May 7, 2014, from related U.S. Appl.
No. 13/477,601, filed May 22, 2012.
USPTO; Office Action dated May 27, 2014, from related U.S. Appl.
No. 13/477,629, filed May 22, 2012.
USPTO; Office Action dated Jun. 5, 2014, from related U.S. Appl.
No. 13/477,598, filed May 22, 2012.
USPTO; Office Action dated Jun. 9, 2014, from related U.S. Appl.
No. 13/477,845, filed May 22, 2012.
USPTO; Office Action dated Jun. 20, 2014, from related U.S. Appl.
No. 13/477,595, filed May 22, 2012.
USPTO; Office Action dated Jul. 16, 2014, from related U.S. Appl.
No. 13/477,600, filed May 22, 2012.
USPTO; Office Action dated Jul. 31, 2014, from related U.S. Appl.
No. 13/477,568, filed May 22, 2012.
USPTO; Office Action dated Aug. 1, 2014, from related U.S. Appl.
No. 13/477,633, filed May 22, 2012.
USPTO; Office Action dated Aug. 27, 2014, from related U.S. Appl.
No. 13/844,448, filed Mar. 15, 2012.
USPTO; Office Action dated Sep. 2, 2014, from related U.S. Appl.
No. 13/844,499, filed Mar. 15, 2012.
USPTO; Office Action dated Oct. 22, 2014, from related U.S. Appl.
No. 13/477,599, filed May 22, 2012.
USPTO; Office Action dated Nov. 7, 2014, from related U.S. Appl.
No. 13/844,499, filed Mar. 15, 2012.
USPTO; Office Action dated Nov. 7, 2014, from related U.S. Appl.
No. 13/477,598, filed May 22, 2012.

* cited by examiner

US 9,081,701 B1

Sheet 1 of 16

Jul. 14, 2015

U.S. Patent

L&V HOlHAd
dl "Oid

{g vzoT)
eleqaasn

{g yeoT)
eyeqlasn

507

{9 ¥20T)
ejeqlasn

0T

€01 \

{g yeot)
eleqiasn

71oue| o g égp ysey} Jo x aéed

LV HOIHd
vl 9Old

<01

101 \

{

$91Aq 960F ‘8'2)
doeds aasn

7 auej Jo @ 3Ip ysej4 Jo x aded

U.S. Patent Jul. 14, 2015 Sheet 2 of 16 US 9,081,701 B1

Host Interface

T J' 202
200
Storage Communications Interface -
{e.g. SCSI or PCl-Express)
1 204
Flash Management Processor
g > RAM
Journaling Engine 208 206
210
Advanced ECC Encoder/Decoder §
212
Flash Stripe Controller T
AV AV \ 4 V
Flash Flash Flash Flash 214
Protocol Protocol ’—_:rotocol ’—AProtocol P
Controller Controller Controller Controller |
2182 g1 22‘11% i:gjmc = 2184
¥ A A—

Flash Flash Flash Flash
Die Devices Devices Devices
\\\ AN \\\ y'\\
216a 216b 216¢ 216d

FIG.

2A

US 9,081,701 B1

Sheet 3 of 16

Jul. 14, 2015

U.S. Patent

dc¢ oOld

JBijouos dss

‘‘‘‘‘‘‘‘‘‘‘‘‘‘ - pgLz - 98l - 48lz - BgLT
g aiQ e o
Heeld " | used yseld yse|4

\\ - \\

P9le- 291z Q9L B9}z
8id a1 oa 1T m _Q
yse| e ysej ysel4 oy
8id aIg oq w _Q 44444444
Heeld " usey yseld ysel4
eI . 81y 91 oiq
yse|4 yseijd ysejd yse|4

- 1 -

US 9,081,701 B1

Sheet 4 of 16

Jul. 14, 2015

U.S. Patent

€ g ssurd
G¥xQ obed
£ZLX0 %¥00Ig
(1 NN/ 3D) L 0ig
¢ sue

€ Old

£ T ssuBld
Gy obed
£Z1x0 %oolg
{i NN /P 3D) LG
Z eueT

SEREN

¢1 Ayoede)
1€ sding abed

oog*

w__mo oc;mE:Q
1 Auoede)d
0g ading abed

¢ () saugld
X obey
£Z1X0 %eo|g
{y AlG d} &g
{y aow d) sue

£ "0 seugld
gxp obeg
£Z1%0 %00ig
¥ Alg @) 81
(¥ aow d) suen

m.m.m. a
IS L NN

; %
. L

7

RS TEOR NN ale Y

9} Auoeden
1+d odg offied

IER] oc._m.c..:oﬁ
g1 Auoeden
d aduyg obeyd

sbuipas Jeab sidwexs pue

JO/SNNTZ ‘8=Q ‘¥ = 1°2E = B upm
plo abed

{sye0 Buleuinop ¢ "B-a) 18y08d Buljeusnop

o18zZ-|Iv
Aed puo
Auey Aewud

sjje0 Butewnor

€~ o saueld
Gixo afed
£Z1X0 YooIg

(O NN/ 30} 08I
L suey

AALIALIL T,

€ D ssue|d
GyxQ sbed
£Z4X0 ¥o0ig
{0 N1/t 30) 08I0
O sueT

\ w\\

${180 bujjsluno!
0 Apoeden
1 adug abed

i ”bmwmamo
0 9ding abed

US 9,081,701 B1

Sheet 5 of 16

Jul. 14, 2015

U.S. Patent

-«—1 byte—»

(o]
g
>
s}
@
2
73]
f]
8 2 -
v 5 8L®
CW 655 Symbol 26 o262 D
CW 654 Symbol 26 > %5 O
CW 653 Symbal 26 0 = El
CW652 Symbol 26 a 2299
CW 651 Symbol 26 530S
CW 650 Symbol 26 cQc @ .
CW 649 Symbol 26 02 ELo
CW 648 Symbol 26 rmdm..w%%
3 SOZELS 3
o - ® IL=5=%6 3
2 m e 2
@ & @)
o © o o
g £ g g
& @ & &
g 9 g)
S g g
v v v
CW7Symbol0 T CW 15 Symbol O CW 1079 Symbol 0] CW 7 Symbol 1 CW 647 Symbol 26
CW 6 Symbol 0 CW 14 Symbol 0 CW 1078 Symbol 0 | CW 6 Symbol 1 CW 646 Symbol 26
CW4Symbol0 | CW 13 Symbol 0 CW 1077 Symbol 0| CW 4 Symbol 1 CW 645 Symbol 26
CWA4 Symbol0 | CW 12 Symbol 0 CW 1076 Symbol 0 | CW 4 Symbol 1 CW 644 Symbol 26
CW3SymbolG | CW 11 Symbol 0 CW 1075 Symbol 0 | CW 3 Symbol 1 CW 643 Symbol 26
CW 2 Symbol 0 CW 10 Symbol 0 CW 1074 Symbol 0| CW 2 Symbol 1 CW 642 Symbol 26
CW 1 Symbol 0 CW 8 Symbol 0 CW 1073 Symbol 0| CW 1 Symbol 1 CW 641 Symbol 26
CW 0 Symbol 0 CW 8 Symbol 0 CW 1072 Symbol 0] CW 0 Symbol 1 CW 640 Symbol 26

10 bitg—p

FIG. 4

US 9,081,701 B1

Sheet 6 of 16

Jul. 14, 2015

U.S. Patent

Yse|4 0} Sl

!

sading
obed ise| Ui sjien Alsed
proO ot Ajed pus pesul

*

PIOMBPOD) PLIE) YOBD 10}
Allled 9101Q pue 8jejnoe)

t

F

SPIOMIPOD) PUL) Jaylen)

NA1'30
‘sueT J02U0D 0} SIN0Y

ces

085

a1npad0i4 buipoou] puo abeyd

G 9ld

Aued Arewidd
Hosu| pue sjenoes

I

aduig afied
0} s|190 Bugeuinop Jesuyj

i

puBLILIOY
Sl 8ding oberyg

LS

906G

/
c0S

US 9,081,701 B1

Sheet 7 of 16

Jul. 14, 2015

U.S. Patent

0£9

829

1epoas(] pUs) 0} ssed $58001d Bunsanbay 0] ejeQ pejaslion) ases|ay e
i X 029
SOA SOA _ _ww>
¢payoEay . ¢oouapyuo) ubiH unm ON | ;eouepyuod ybiH yum L
uous) Buddolg © oN pauuousd uoioaLo) pausioped uofoRuoD @w@
oN 929 1 1
\QNm\ \ apooaQg AteWiid oposeqg Aewid ‘ .v/r 9
t 1
T {sY77) suonewnse (s |
et H77) uonewnse -
TAAS] poojijey jous ajepdn pOOYIEN) J04B LoLd-Y N/_\m
|| sieleweled useip yum | Ared Bupuodsanony T
"l ewep pejsonbal pees-ay | pue eieq psisenbaipesd 019
819" i
sjge] dnmjoo _
909 |G Yse|4 pue Jesgy |
9 'Ol) o
Y09 ss81ppY [eashyd/esibo
ﬁ 809
e 1sonbay 1senhay peay
209 peay oolg jeoifo ading ebed

U.S. Patent

r—»

Jul. 14, 2015 Sheet 8 of 16
Failed Primary Decode of 702
Requested Data e
Generate Read Requests | 704
for all Page Stripes of Grid
706
Read Page Stripes of Grid -~
Primary Decoding /,,,708
v 718
Failed Primary decoded |Yes | Release Corrected Datato |
with High Confidence? Requesting Process
N
v 719
Stopping Criterio Yes
gg;gchelig on ° > Grid Decode Failure
i No
710
Grid Codeword Interleaver | .~
. 712
Grid Memory e
¥ 714
Grid Decoding g
v
. 716
Grid Codeword /

Deinterleaving

1

FIG. 7

A

US 9,081,701 B1

720

730

U.S. Patent

Jul. 14, 2015

Sheet 9 of 16

US 9,081,701 B1

FIG. 8

| NEXT PAGE STRIPE - l
+ -804 v

ISIOURNALING CELL_
< CAPACITY OF PAGE ™
. STRIPE ZERO?.~

¥ -806
RECEIVE / DE-CACHE
USER DATA “
808

ARRANGE USER
DATA INTO
JOURNALING PKT

ARRANGE
JOURNALING PKT
INTO JOURNALING

CEL‘L(S)

-~ JOURNALING™ ™.,

" CELLFULL? -~

Y 812

816

LAST JOURNALING
" CELL SLOT FOR ~™.._

T~ USER DATAFOR THE -

NEXT JOURNALING

CELL AND SLOT

TPAGE STRIPE?™

XY 814
LAST JOURNALING
" CELLSLOT FOR ™.

818

CALCULATE
PRIMARY PARITY

856

/

NEXT PAGE GRID

A

--854

Retrieve next available
i block grid from record

4

8562

Move Current Record
to ‘Full’

T

Y

850 . |

_~LAST PAGE GRID OF~ _l
" THE BLOCK GRID?

“USERDATAFORTHE-""N™ FOR USER DATA -
"RAGE GRIDZ- CODEWORDS T
¥ 828
CALCULAT?E :mMAéY 820 .. +
PARITY FOR USER UPDATE PARITY
DATA CODEWORDS, IF DATA FOR GRID
ANY CODEWORDS
¥ 830 822y
FINALIZE PARITY \
DATA FOR GRID PROGRAM PAGE 846 . -
CODENORDS N e
-832824-. ¥ UL STRIPEZERO?. -
T ARRANGE PARITY Update Virt/Phys Map | _ | e v
DATA FOR GRID Table 844.. 4 |
CODEWORDS INTO = ; 3
JOURNALING CELL - NEXT PAGE STRIPE [«
SLOT CALCULATE PRIMARY !
3 PARITY FORGRID | --838
834 PARITY CODEWORDS N
_LAST PAGE STRIPE. 'y ¥ =840 T 842
7 JOURNALING CELL e s e M~ Y
T 8LoT? PROGRAM PAGE < LAS?LIF;%%E o
T STRIPE . L
N = N
| NEXT JOURNALING | Update Virt/Phys Map '

CELL

Table ;

US 9,081,701 B1

Sheet 10 of 16

Jul. 14, 2015

U.S. Patent

‘‘‘‘‘‘‘‘ = euog
266N

D AR

6 'Old

o
SSIBD PO O %
"= Ayoeded pug
sbed-Bupusy
i

ureding sBed— SIA

0£6

olaz
= -||e alem aduyg obed

pUS salende] 003

puo abed jo aduis

S
026 afed xau = JXaN.,
i
JuBLng,
S8L008q IXaN
806 A
A, 0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, J0B- Ppaossy Jusung SAow

i

eeq |
R PUBLILIOYD) A == — b — YsSB4 0] JUBLNT) SWIA
WM 003 |)
““““““““ ol O0€ soA |
206~ PA L
=N jualng >
I Y mmm y T
| o) Buiddely e t

[eoisAuydjeatot

u, -~ \
¢c0l- _-» . eduis
706 k_&w:n e O WeN S
r
aduis sbed 1xau Jo ‘L TR
\\\c:m JUBLND OW SWIM ~~ ./t gang |
€06~ f '/ weung

/

}sanbay sl

/o oee

\

. e

SPHS o0ig {In

| se psjepdn
@Nm,, 1 S€ p3iepon 903 wNm/
; yseld PO
SAR O} SHWWIOD) 9 AR b obed xau jo ading

abed 1544 = JXON,

LS

splooay aduyg efed

P00y PHD 0019

US 9,081,701 B1

Sheet 11 of 16

Jul. 14, 2015

U.S. Patent

ysejd

] o

¢

Jepodoulg D03

¢

suibug Buiewnor

0l ©Old

SOSEIN

912
+ A
(sepooaq) 0L0lL 3001
UONOBLOD I . ~,
ainsesg/iou y i
el 3 ._Vmuo _‘ puUD Moo|g HAOHD
+ N —‘O F Umﬁvmwt< WO COMHN_JU_NO CO_wUmmewG mwmm& Umw_.m.m
IS4y Uoheweoay AU
pug ebed . Ol [oo
|| uonBWwEPSY - uonosleq %oolg palie-
L puoyolg O .
1ipeRile] \ :
UOHBWIEDSY PUO ¥90|g Mo / : y00}
SPLS) %00
vﬁowtw %mou uo;m_:o_mo JnouD UowoaIa(81 Poled
8001 2001~

S|geL
s S|qE | snielg Buiddey
pug ¥o0ig letshyd Eorshug 8i01g ejeq
sjqefeny 1sd P |
AT y20L-~ 220l 0201

U.S. Patent Jul. 14, 2015 Sheet 12 of 16 US 9,081,701 B1

1102

’/ Media Initialization
2
Initialize Page Stripe Tableto | 1104
Max Gear 47
¥
Read Bad Block Tables from 1106
Media g
¥
Set all Page Stripes residing on /,1 108
Bad Blocks to Gear 0
¥
Erase All Blocks pointed to by 1110
Page Stripe Table e’
¥
Write scrambled data to each /.1 112
stripe of Page Stripe Table -+~

¥
Select first Page Stripe 7 1 114
¥
Read Stripe and Decode using! 1116
LS .
Max Gear i
L4
Next Page Stripe //1 128 N /1 118
i - Ves .~ Decode <
\"Sgccessful}/ No
? o
Compare # Errors Corrected to /1 120
RBER Thresholds -
7 : 1124
Set Gear for Page Stripe to 1122 . ¥ .
lowest nonzero gear for which |
RBER does not exceed its . Set Gear for Page Stripe to 0.
Threshold i i
et e
S 1126
No _~Last Page™._~

‘\\ Stripe? /

e

US 9,081,701 B1

Sheet 13 of 16

Jul. 14, 2015

U.S. Patent

LOCL
SSaIppyY
........ lenpip
ozl
€0t .

ajqel

gofie|sueld]
[eo18ALUd
0} [BNLEA

cl

JOJHOH
ssaippy feotshud

L0z

Old

01074 T

c0ch

- QM 1XBU
JO UolED0T

N

v

\
AN

Ajsnonesd
pUD v_omu_m_

SpUO %00Ig JaPIO

5
N,

\

SPUD Yooig
ajgejieny

2

oI jeuinop

O} PUD X00Ig 1XBN

S0Z1

Oju U,,m:mE:oﬁ
Buiaq pus ¥o0lg Wwenng

US 9,081,701 B1

Sheet 14 of 16

Jul. 14, 2015

U.S. Patent

Jeel suoQ < U0 SPUD Yoo IV — o
A A ogey
1811 pU9D o0|g SElEAY
O} puD Yo0Ig ppy -
i 8cel
pue %o0|d Jo .
SHO0|g Yse|4 9seiy @N...m L
LN %
YZelL | ¢suoa puo yoig
i jospugebediy |
i
uogdaoxg - .
09 0} st obed pajed |
2cel Sinjig4 UojEWERSY 19G '0JU1 JBOS) MO UM |
veel o aige] aduig afied aepdn CCEL
¢suoneiey auibu3 Bujpewunor
ON XEN 7 0} Y] PUE BlEq POWIERSY |7 |
\ ON =4 4
8poos ; [N§SS990N
7| pUS) 8insel3/i04g el S v
9eel i gilel
» apaoeq D3 Aewiid
Y 9l€cl
-1 useld woy pus) sbed pesy
vicl »
- pug) ebed yoes o4 -
¢iel A
¢l 'Ol4 ole r\ PUS %00|g UDES 104
/Y
(s)pu . pajejeq ebed pojey
pug !
80EL | yooig peweyy siemnoED
[y A pewsieq wooig parey

patosle(aiQ pajiey

US 9,081,701 B1

Sheet 15 of 16

Jul. 14, 2015

U.S. Patent

{ uonetrado aseie ading yooig Jo} Apesy adg

\
Ayoeden
aduig abed arepdn
” T 3
14443
reasy

ajel Jamo| X3 10819

A ad)

- .

e IXeN -

Zevl A

pesbey e

S
Ayoeden
adug abe syepdn
T
9evL
poysies

S! plOYSoRy | S0YM
Jeac)y ajes-ysaybiy 19|88

13

sploysesyl sA y¥3ag
palewiIse i1se| ssedwon

-

\\m.dw:w:_m>mumwmw X
40 uommm_u_.\.\.\

Gl

~. Hiapepuog |

T

A

aes Bely el
048D

)

UOJE30] M3U O} Bjep PIfeA jeusnop
‘UOND@0D JoUT LUopad
‘ading ofed woy ejeq peay

4

pawieloay butdyg
oduyg ofied

S
4 elgel
- 0o » snels
Apoeden) ading abed 19g L eosAud
i 5 e /
| avk ey
uoieN|BAS-8Y JBsn
10} sabed pspuog bei4
Syl
/n elger
sading " i Bupuog
abed pspuog Ajnuspy o1 ebeq |
|/ eipapy yseld /
oLyl “Zivl
. ﬁm.mm_bm afied W&O/,

U.S. Patent Jul. 14, 2015 Sheet 16 of 16 US 9,081,701 B1

RECEIVE LOGICAL /1 502
ADDRESS

v

LOOK UP LOGICAL
ADDRESS WITHA PAGE |~
GRID NUMBER AND A
JOURNALING CELL SLOT
NUMBER

v

INITIALIZE 1 506
JCSP.G.COUNT=0
JCS.P.S. COUNT=0

P.S. COUNT =0

v 1508

RETRIEVE ECC GEARFOR i~
THE PAGE STRIPE

1504

1514

, " ++ P.S. COUNT -

OF JOURNALING CELL

SLOTS FOR THE PAGE
STRIPE FROM ECC GEAR (1510

ISTHE CAPACITY OF J5812

<7 JOURNALING CELL "> Y
T-8LOTS ZERO?Z-

1520

++J.CSP.G.COUNT |
N ++ J.C.S.P.S. COUNT 1522

\ |
f}f J.C.S.P.S.COUNT =0
T) A

~JCSPG.COUNT="~. -~ JCSP.S COUNT=_ YJ
“.J.C. SLOT NUMBER?. e omMax?

. - N e ’//,,.-» ho

! 1515 1518

Y

{ v H
\PHYSICAL ADDRESS = PAGE|
| GRID ADDRESS + OFFSET | 454g
| FORPAGE STRIPE+ |
| OFFSET FOR J.C.8. COUNT |~

FIG. 15

US 9,081,701 B1

1
SYSTEMS AND METHODS FOR DECODING
DATA FOR SOLID-STATE MEMORY

CROSS-REFERENCE TO RELATED
APPLICATION

Appendix A

Appendix A, which forms a part of this disclosure, is a list
of commonly owned copending U.S. patent applications.
Each one of the applications listed in Appendix A is hereby
incorporated herein in its entirety by reference thereto.

Appendix B

Appendix B, which forms a part of this disclosure, is a
second list of commonly owned copending U.S. patent appli-
cations. Each one of the applications listed in Appendix B is
hereby incorporated herein in its entirety by reference thereto.

BACKGROUND

1. Field of the Invention

Embodiments of the invention generally relate to electron-
ics, and in particular, to memory controllers, such as to solid-
state drive memory controllers.

2. Description of the Related Art

Flash memory is a form of non-volatile memory. A
memory cell in flash memory can be a single-level cell (SLC),
which encodes one bit of information per cell, or a multi-level
cell (MLC), which encodes two or more bits of information
per memory cell. Typically, a flash memory implementation
using MLC is much cheaper than a flash memory implemen-
tation with SLC. Further, a flash memory device is arranged
into pages and blocks. Data can be written to and read from
flash memory in pages. A group of pages known as a block
corresponds to the smallest erasable unit of flash memory.

Over time, programming and erasing flash memory causes
a variety of defects that degrade the performance of the flash
memory cell. In particular, MLLC memory cells have much
lower program/erase cycle lifetimes than SL.C memory cells,
which can be a problem in an enterprise application. This
degradation, along with other noise effects, cause the signal-
to-noise ratio of the memory cell to change over time. After
the signal-to-noise ratio has fallen to a certain level, the flash
memory device is typically no longer reliable. Manufacturers
typically specify a number of program/erase cycles over
which the properties of their flash devices are guaranteed.

As flash memory technologies become denser with
decreasing process technology, the amount of charge stored
on a floating gate of a memory cell tends to fall, crosstalk
between cells tends to rise, insulation material between
memory cells become thinner, and so on. Taken together,
these effects tend to cause the signal-to-noise ratio of flash
memory to decrease with each passing generation.

Flash memory devices require the use of a form of Error
Correction Coding (ECC) to detect and correct the errors that
inevitably occur. ECC, and in particular the ubiquitous Reed-
Solomon or the Bose, Chaudhuri, and Hocquenghem (BCH)
hard-decision codes, are widely used in electronics as a way
of mitigating low signal-to-noise ratio in communications
and storage media. With ECC, redundant information is
stored or transmitted alongside the regular information bear-
ing data, to permit an ECC decoder to deduce the originally
transmitted or stored information even in the presence of
errors.

15

40

45

55

2

A conventional approach to error management for MLC
flash memories has been for the flash memory chip manufac-
turer to specify a particular strength of ECC code, typically a
one-dimensional BCH code, capable of correcting a certain
number of bits per certain size of sector, for example 24 bits
per 1024 bytes. Examples of allocations of flash bytes in a
typical flash page using vendor-specified BCH are shown in
FIGS. 1A and 1B. FIG. 1A illustrates a standard layout for a
page of flash memory. A region is provided for user data 101
or information data in the main area of the flash page, and a
spare area 102 is provided to provide room for ECC parity and
other data. In practice, the user data 103, metadata 104, such
as data integrity feature (DIF) and Journaling Engine man-
agement data, and the manufacturer’s recommended amount
of ECC parity data 105 may be stored interleaved within the
page as illustrated in FIG. 1B.

So long as the specified error correction is provided by the
flash controller, the flash memory chip manufacturer guaran-
tees a certain number of Program/Erase (P/E) cycles over
which the flash memory chips will store and retain data, with
no more errors than the ECC can correct, with a probability of
uncorrectable errors occurring less than some acceptable risk
for the end user. For example, consumer grade flash-based
drives may tolerate a relatively high uncorrectable error rate.
However, in an enterprise storage environment, a relatively
low uncorrectable error rate is applicable, for example,
1x107'9 (1E-16).

However, conventional approaches of applying ECC to
flash memory can be inefficient at achieving relatively low
uncorrectable error rates over the total service life and traffic
loads that can be required in an enterprise storage environ-
ment, such as in a server.

SUMMARY

Disclosed techniques provide relatively low uncorrectable
bit error rates for flash memory, low write amplification, long
life, fast and efficient retrieval, and efficient storage density
such that a solid-state drive (SSD), flash drive, or the like can
be implemented using relatively inexpensive MLC flash or
other MLLC memory for an enterprise storage application.

One embodiment of the invention advantageously groups
pages of memory across multiple dies, and manages these
pages such that in a way that provides many benefits. For
example, an embodiment of the invention provides for recov-
ery of data after failure of a substantial part of a flash die, such
as a page, block, plane, or entire die. Die failures after manu-
facturing test occur at a rate dependent on many factors, but
rates of approximately 200 ppm are common. For an array of
256 dice, such as in an SSD, the likelihood of at least one such
failure is 1-(1-200E—6)"256=5%. One embodiment of the
invention reduces the impact of error floors and flares in an
inner (primary) ECC schemes such as BCH or LDPC to
acceptable levels, said acceptable level being application-
dependent, with 1 uncorrectable error in 1E16 bits being
typical. One embodiment of the invention allows operation of
that primary ECC in error regimes that, on their own, can
produce unacceptably high post-correction error. One
embodiment of the invention reduces or minimizes impacts to
overprovisioning, throughput, power, and endurance arising
from the failure of one or more dies (or partial dies) in a flash
array. One embodiment of the invention allows for fine-
grained setting of the initial over-provisioning at the begin-
ning of life of a drive.

The methods described herein help make SSDs using MLL.C
flash less expensive, more reliable, and easier to manage. For
example, it makes possible the construction of robust SSDs

US 9,081,701 B1

3

that can continue operation seamlessly despite the failure of
multiple dies in the field, with virtually no decrease in reli-
ability. This can be an important feature in a number of
applications, including, but not limited to, industrial, military,
and mobile networking applications. One embodiment effec-
tively moves the block remapping function into the error
correction domain and eliminates the tables used to avoid bad
blocks, saving approximately 1 MB of DRAM per 2 GB of
Flash.

One embodiment includes an electronically-implemented
method of organizing memory for a mass-storage device for
redundancy, wherein the method includes: organizing the
memory into a plurality of block grids, wherein a block grid
includes a plurality of page grids, wherein a page grid
includes a plurality of page stripes, wherein a page stripe
includes a plurality of pages or integer fractions thereof;
distributing a first plurality of N journaling cell slots among
the page stripes of a first page grid, wherein a journaling cell
slot includes an area of memory large enough to store a
journaling cell; wherein the N journaling cell slots further
includes N1 journaling cell slots for user data and N2 jour-
naling cell slots for grid parity data, wherein both N1 and N2
are integers, wherein the page stripes of the first page grid
include at least a first page stripe associated with a first gear
such that the first page stripe has a first non-zero integer
journaling cell slot capacity for data and a first capacity for
parity bits of a first error correction code protective of data
stored within the first page stripe, a second page stripe asso-
ciated with a second gear such that the second page stripe has
a second non-zero integer journaling cell slot capacity difter-
ent from the first non-zero journaling slot capacity and a
second capacity for parity bits of the first error correction
code protective of data stored within the second page stripe, at
least a third page stripe associated with a gear zero such that
the third page stripe has a zero journaling cell slot capacity
and has no parity bits; wherein grid parity data includes a set
of parity bits of a second error correction code protective over
the first page grid, wherein the second error correction code is
of an erasure code type such that decoding of the grid parity
data can rebuild data of at least one failed page stripe of the
first page grid; and mapping a logical block address to a
journaling packet, which is mapped to one or more journaling
cell slots of the N1 journaling cell slots.

One embodiment includes an electronically-implemented
method of mapping memory for a mass-storage device,
wherein the method includes: grouping flash pages into page
grids, wherein pages of a page grid have the same block and
page address, wherein the page grid spans one or more planes
and 3 or more dice; subgrouping the page grid into page
stripes, wherein a page stripe of the page grid includes at least
two pages from different planes of a first die; adaptively
selecting a data storage capacity of the page stripe corre-
sponding to an integer multiple of journaling cell slots and a
characteristic of a first error correction code stored within the
page stripe, wherein the first error correction code is protec-
tive of data and stored within the page stripe, wherein a
journaling cell slot includes an area of memory large enough
to store a journaling cell; and reserving a pre-determined
number of journaling cell slots of the page grid for storage of
a second error correction code protective of data stored within
journaling cell slots and the corresponding first error correc-
tion code across the page grid.

One embodiment includes an apparatus for organizing
memory for a mass-storage device for redundancy, wherein
the apparatus includes: an ECC encoder/decoder; and a cir-
cuit configured to: organize the memory into a plurality of
block grids, wherein a block grid includes a plurality of page

20

25

35

40

45

50

4

grids, wherein a page grid includes a plurality of page stripes,
wherein a page stripe includes a plurality of pages or integer
fractions thereof; distribute a first plurality of N journaling
cell slots among the page stripes of a first page grid, wherein
ajournaling cell slot includes an area of memory large enough
to store a journaling cell; wherein the N journaling cell slots
further include N1 journaling cell slots for user data and N2
journaling cell slots for grid parity data, wherein both N1 and
N2 are integers, wherein the page stripes of the first page grid
include at least a first page stripe associated with a first gear
such that the first page stripe has a first non-zero integer
journaling cell slot capacity for data and a first capacity for
parity bits of a first error correction code protective of data
stored within the first page stripe, a second page stripe asso-
ciated with a second gear such that the second page stripe has
a second non-zero integer journaling cell slot capacity difter-
ent from the first non-zero journaling slot capacity and a
second capacity for parity bits of the first error correction
code protective of data stored within the second page stripe, at
least a third page stripe associated with a gear zero such that
the third page stripe has a zero journaling cell slot capacity
and has no parity bits; wherein grid parity data includes a set
of parity bits of a second error correction code protective over
the first page grid, wherein the second error correction code is
of an erasure code type such that decoding of the grid parity
data can rebuild data of at least one failed page stripe of the
first page grid; wherein the circuit is configured to map a
logical block address to a journaling packet, which is mapped
to one or more journaling cell slots of the N1 journaling cell
slots.

One embodiment includes an apparatus for mapping
memory for a mass-storage device, wherein the apparatus
includes: an ECC encoder/decoder; and a management pro-
cessor configured to: group flash pages into page grids,
wherein pages of a page grid have the same block and page
address, wherein the page grid spans one or more planes and
3 or more dice; subgroup the page grid into page stripes,
wherein a page stripe of the page grid includes at least two
pages from different planes of a first die; adaptively select a
data storage capacity of the page stripe corresponding to an
integer multiple of journaling cell slots and a characteristic of
a first error correction code stored within the page stripe,
wherein the first error correction code is protective of data and
stored within the page stripe, wherein a journaling cell slot
includes an area of memory large enough to store a journaling
cell; and reserve a pre-determined number of journaling cell
slots of the page grid for storage of a second error correction
code protective of data stored within journaling cell slots and
the corresponding first error correction code across the page
grid.

One embodiment includes an electronically-implemented
method of data storage, wherein the method includes: deter-
mining a page stripe to be programmed; receiving user data as
logical blocks associated with logical block addresses to be
stored in a mass-storage device, wherein the mass-storage
device includes a plurality of memory dies arranged in an
array of one or more lanes in width and two or more dies in
depth, wherein the memory dies include non-volatile
memory, wherein the mass-storage device is organized into a
plurality of block grids, wherein a block grid includes a
plurality of page grids, wherein a page grid includes a plural-
ity of page stripes, wherein a page stripe includes a plurality
of pages or integer fractions thereof; arranging each logical
block of user data into a journaling packet such that the
journaling packet holds journaling packet data; arranging the
journaling packet data into one or more journaling cells for
writing to the mass-storage device, wherein page stripes have

US 9,081,701 B1

5

allocated therein, zero or more slots for storage of journaling
cells; when there are at least as many journaling cells with
journaling packet data ready to be written as there are jour-
naling cell slots for journaling packet data in the page stripe:
allocating the journaling packet data of each journaling cell to
information bits of one or more primary error correction code
(ECC) codewords; calculating primary parity for the primary
ECC codewords for each journaling cell in the page stripe,
wherein the primary parity is protective of journaling packet
data to be stored within the journaling cell slots of the page
stripe; programming the page stripe with the journaling cells;
updating a first mapping table to associate at least one or more
logical addresses of the user data with one or more physical
addresses for corresponding journaling cell slots; and select-
ing a next page stripe to be programmed, wherein the page
stripes of the page grid are programmed in a predetermined
order, wherein in selecting the next page stripe, any page
stripes that have a zero journaling cell slot allocation are
skipped until one is found that has a non-zero journaling cell
slot allocation.

One embodiment includes an apparatus, wherein the appa-
ratus includes: an ECC encoder/decoder; and a first circuit
configured to: determine a page stripe to be programmed;
receive user data as logical blocks associated with logical
block addresses to be stored in a mass-storage device,
wherein the mass-storage device includes a plurality of
memory dies arranged in an array of one or more lanes in
width and two or more dies in depth, wherein the memory dies
include non-volatile memory, wherein the mass-storage
device is organized into a plurality of block grids, wherein a
block grid includes a plurality of page grids, wherein a page
grid includes a plurality of page stripes, wherein a page stripe
includes a plurality of pages or integer fractions thereof;
arrange each logical block of user data into a journaling
packet such that the journaling packet holds journaling packet
data; arrange the journaling packet data into one or more
journaling cells for writing to the mass-storage device,
wherein page stripes have allocated therein, zero or more slots
for storage of journaling cells; when there are at least as many
journaling cells with journaling packet data ready to be writ-
ten as there are journaling cell slots for journaling packet data
in the page stripe: the first circuit is configured to allocate the
journaling packet data of each journaling cell to information
bits of one or more primary error correction code (ECC)
codewords; the ECC encoder/decoder is configured to calcu-
late primary parity for the primary ECC codewords for each
journaling cell in the page stripe, wherein the primary parity
is protective of journaling packet data to be stored within the
journaling cell slots of the page stripe; the first circuit is
configured to program the page stripe with the journaling
cells; the first circuit is configured to update a first mapping
table to associate at least one or more logical addresses of the
user data with one or more physical addresses for correspond-
ing journaling cell slots; and the first circuit is configured to
select a next page stripe to be programmed, wherein the page
stripes of the page grid are programmed in a predetermined
order, wherein in selecting the next page stripe, any page
stripes that have a zero journaling cell slot allocation are
skipped until one is found that has a non-zero journaling cell
slot allocation.

One embodiment includes an electronically-implemented
method of retrieving user data, wherein the method includes:
receiving a logical address and a read request for the user data;
determining a journaling cell slot, a first page stripe, and a
page grid corresponding to the logical address, wherein the
page grid includes a plurality of related page stripes including
the first page stripe, wherein the page stripes of the page grid

10

15

20

25

30

35

40

45

50

55

60

65

6

are related by having a grid error correction code having
codewords spanning the page grid, wherein the page stripe
includes a plurality of pages or integer fractions thereof,
wherein the journaling cell slot is allocated to the first page
stripe; retrieving information indicative of a capacity of jour-
naling cell slots per page stripe of the page grid, wherein the
capacity is zero for at least a second page stripe of the page
grid; identifying data corresponding to the at least second
page stripe as identically zero for a decoder of the grid error
correction code; retrieving data from a set of page stripes of
the page grid having non-zero journaling cell slot capacity,
wherein page stripes having non-zero journaling cell slot
capacity each have a primary error correction code within the
page stripe; performing error correction within the page
stripes of the page grid having non-zero journaling cell slot
capacity; decoding the grid error correction code to correct
errors throughout the page grid to generate a first corrected
first page stripe; performing primary error correction on the
first corrected first page stripe to generate a second corrected
first page stripe; and providing the user data from the jour-
naling cell slot of the second corrected first page stripe.

One embodiment includes an apparatus for retrieving user
data, wherein the apparatus includes: a circuit configured to:
receive a logical address and a read request for the user data;
determine a journaling cell slot, a first page stripe, and a page
grid corresponding to the logical address, wherein the page
grid includes a plurality of related page stripes including the
first page stripe, wherein the page stripes of the page grid are
related by having a grid error correction code having code-
words spanning the page grid, wherein the page stripe
includes a plurality of pages or integer fractions thereof,
wherein the journaling cell slot is allocated to the first page
stripe; retrieve information indicative of a capacity of jour-
naling cell slots per page stripe of the page grid, wherein the
capacity is zero for at least a second page stripe of the page
grid; identify data corresponding to the at least second page
stripe as identically zero for a decoder of the grid error cor-
rection code; retrieve data from a set of page stripes of the
page grid having non-zero journaling cell slot capacity,
wherein page stripes having non-zero journaling cell slot
capacity each have a primary error correction code within the
page stripe; and an ECC encoder/decoder configured to: per-
form error correction within the page stripes of the page grid
having non-zero journaling cell slot capacity; decode the grid
error correction code to correct errors throughout the page
grid to generate a first corrected first page stripe; perform
primary error correction on the first corrected first page stripe
to generate a second corrected first page stripe; and provide
the user data from the journaling cell slot of the second
corrected first page stripe.

One embodiment includes an electronically-implemented
method of reclaiming a flash block of a flash array, wherein
the method includes: selecting a block grid for reclamation,
wherein block grids include a plurality of page grids, wherein
page grids include a plurality of page stripes, wherein page
stripes include a plurality of pages or integer fractions
thereof, wherein a block of pages includes a smallest
eraseable unit of memory such that the plurality of page grids
comprising a block grid are related by having pages belong-
ing to the same blocks; wherein a host accesses data using
logical block addresses, wherein the logical blocks are stored
in journaling cell slots, wherein valid data includes data
stored in journaling cell slots that the host expects to be able
to access; wherein a plurality of gears indicative of a journal-
ing cell capacity and error correction coding scheme include
at least a first gear, a second gear, and a gear zero, wherein
page stripes associated with the first gear have a first non-zero

US 9,081,701 B1

7

integer journaling cell slot capacity and a first error correction
coding scheme protective of data stored in the journaling cells
of the first page stripe, wherein page stripes associated with
the second gear have a second non-zero integer journaling
cell slot capacity different from the first non-zero journaling
slot capacity and a second error correction coding scheme
protective of data stored in the journaling cells of the second
page stripe, wherein page stripes associated with gear zero
have a zero journaling cell slot capacity and no parity bits of
the second error correction code; wherein for valid data stored
in the block grid, the method further includes: reading data
from corresponding one or more journaling cell slots; per-
forming error correction on the read data to generate cor-
rected data; evaluating a condition of a page stripe based at
least partly on the error correction decoding of the data within
the journaling cell slots of the page stripe; storing the cor-
rected data into one or more journaling cell slots of page
stripes of a different block grid; updating one or more tables
with new associations between logical block addresses and
journaling cell slots; erasing the blocks of the block grid;
updating gear settings for the page stripes of the block grid
based at least partly on the evaluation conditions for the page
stripes; and making the page stripes of the block grid available
for writing; wherein at least selecting, reading, and storing are
performed by an integrated circuit.

One embodiment includes an apparatus for reclaiming a
flash block of a flash array, wherein the apparatus includes: a
first circuit configured to select a block grid for reclamation,
wherein block grids include a plurality of page grids, wherein
page grids include a plurality of page stripes, wherein page
stripes include a plurality of pages or integer fractions
thereof, wherein a block of pages includes a smallest
eraseable unit of memory such that the plurality of page grids
comprising a block grid are related by having pages belong-
ing to the same blocks; wherein a host accesses data using
logical block addresses, wherein the logical blocks are stored
in journaling cell slots, wherein valid data includes data
stored in journaling cell slots that the host expects to be able
to access; wherein a plurality of gears indicative of a journal-
ing cell capacity and error correction coding scheme include
at least a first gear, a second gear, and a gear zero, wherein
page stripes associated with the first gear have a first non-zero
integer journaling cell slot capacity and a first error correction
coding scheme protective of data stored in the journaling cells
of the first page stripe, wherein page stripes associated with
the second gear have a second non-zero integer journaling
cell slot capacity different from the first non-zero journaling
slot capacity and a second error correction coding scheme
protective of data stored in the journaling cells of the second
page stripe, wherein page stripes associated with gear zero
have a zero journaling cell slot capacity and no parity bits of
the second error correction code; a second circuit including
an ECC encoder/decoder, wherein the second circuit is con-
figured to, when valid data stored in the block grid: read data
from corresponding one or more journaling cell slots; per-
form error correction on the read data to generate corrected
data; evaluate a condition of a page stripe based at least partly
on the error correction decoding of the data within the jour-
naling cell slots of the page stripe; store the corrected data into
one or more journaling cell slots of page stripes of a different
block grid; update one or more tables with new associations
between logical block addresses and journaling cell slots;
erase the blocks of the block grid; update gear settings for the
page stripes of the block grid based at least partly on the
evaluation conditions for the page stripes; and make the page
stripes of the block grid available for writing.

10

15

20

25

30

35

40

45

50

55

60

65

8

One embodiment includes an electronically-implemented
method of adapting to changing characteristics of multi-level
flash cells, the method comprising: storing data in pages of a
memory device having multi-level cells, wherein two or more
bonded pages share a set of multi-level cells, wherein a multi-
level cell is configured to store a first bit for a first page and a
second bit for a second page of the bonded pages; arranging
the pages of the memory device into a plurality of page stripes
for storage of data, wherein page stripes individually include
one or more pages or integer fractions thereof, wherein the
bonded pages belong to separate page stripes such that a first
page stripe and a second page stripe of a bonded page stripe
are related by having bonded pages of memory that share
multi-level cells, wherein an ECC characteristic is selected
for a page stripe and is applicable to the one or more pages or
integer fractions thereof of the page stripe, wherein the plu-
rality of page stripes include at least a third page stripe asso-
ciated with a first gear such that the third page stripe has a first
non-zero integer journaling cell slot capacity for data and a
first capacity for parity bits of a first error correction code
protective of data stored within the first page stripe and a
fourth page stripe associated with a second gear such that the
fourth page stripe has a second non-zero integer journaling
cell slot capacity different from the first non-zero journaling
slot capacity and a second capacity for parity bits of the first
error correction code protective of data stored within the
second page stripe; using the first page stripe and the second
page stripe of the bonded page stripe to store data; determin-
ing a first estimated bit error rate (first BER) for the first page
stripe and a second estimated bit error rate (second BER) for
the second page stripe during field use of the memory device,
wherein none of the first page stripe or the second page stripe
is associated with gear zero at the time of determining the first
BER and the second BER, wherein gear zero corresponds to
a zero journaling cell slot capacity; and when at least one of
the first BER or the second BER exceeds a first predetermined
threshold, associating gear zero with a selected one of the first
page stripe or the second page stripe.

One embodiment includes an electronically-implemented
method of selecting an error correction code (ECC) charac-
teristic, wherein the method includes: storing data in pages of
a memory device having multi-level cells, wherein two or
more bonded pages share a set of physical cells, wherein a
multi-level cell is configured to store a first bit for a first page,
a second bit for a second page, and a third bit for a third page
of the bonded pages; arranging the pages of the memory
device into a plurality of page stripes for storage of data,
wherein page stripes individually include one or more pages
or integer fractions thereof, wherein the bonded pages belong
to separate page stripes such that a first page stripe, a second
page stripe, and a third page stripe of a bonded page stripe are
related by having bonded pages of memory that share multi-
level cells, wherein an ECC characteristic is selected for a
page stripe and is applicable to the pages of the page stripe,
wherein the plurality of page stripes include at least a fourth
page stripe associated with a first gear such that the fourth
page stripe has a first non-zero integer journaling cell slot
capacity for data and a first capacity for parity bits of a first
error correction code protective of data stored within the first
page stripe, and a fifth page stripe associated with a second
gear such that the second page stripe has a second non-zero
integer journaling cell slot capacity different from the first
non-zero journaling slot capacity and a second capacity for
parity bits of the first error correction code protective of data
stored within the second page stripe; using the first page
stripe, the second page stripe, and the third page stripe of the
bonded page stripe to store data; determining a first estimated

US 9,081,701 B1

9

bit error rate (first BER) for the first page stripe, a second
estimated bit error rate (second BER) for the second page
stripe, and a third estimated bit error rate (third BER) for the
third page stripe during field use of the memory device,
wherein none of the first page stripe, the second page stripe, or
the third page stripe is associated with gear zero at the time of
determining the first BER, the second BER, and the third
BER, wherein gear zero corresponds to a zero journaling cell
slot capacity; and when at least one of the first BER, the
second BER, or the third BER exceeds a first predetermined
threshold, associating gear zero with a selected one of the first
page stripe, the second page stripe, or the third page stripe.

One embodiment includes an apparatus, wherein the appa-
ratus includes: a journaling engine configured to: store data in
pages of a memory device having multi-level cells, wherein
two or more bonded pages share a set of multi-level cells,
wherein a multi-level cell is configured to store a first bit for
a first page and a second bit for a second page of the bonded
pages; arrange the pages of the memory device into a plurality
of page stripes for storage of data, wherein page stripes indi-
vidually include one or more pages or integer fractions
thereof, wherein the bonded pages belong to separate page
stripes such that a first page stripe and a second page stripe of
a bonded page stripe are related by having bonded pages of
memory that share multi-level cells, wherein an error correc-
tion code (ECC) characteristic is selected for a page stripe and
is applicable to the one or more pages or integer fractions
thereof of the page stripe, wherein the plurality of page stripes
include at least a third page stripe associated with a first gear
such that the third page stripe has a first non-zero integer
journaling cell slot capacity for data and a first capacity for
parity bits of a first error correction code protective of data
stored within the first page stripe and a fourth page stripe
associated with a second gear such that the fourth page stripe
has a second non-zero integer journaling cell slot capacity
different from the first non-zero journaling slot capacity and
a second capacity for parity bits of the first error correction
code protective of data stored within the second page stripe;
use the first page stripe and the second page stripe of the
bonded page stripe to store data; and an ECC encoder/de-
coder configured to: determine a first estimated bit error rate
(first BER) for the first page stripe and a second estimated bit
error rate (second BER) for the second page stripe during field
use of the memory device, wherein none of the first page
stripe or the second page stripe is associated with gear zero at
the time of determining the first BER and the second BER,
wherein gear zero corresponds to a zero journaling cell slot
capacity; and when at least one of the first BER or the second
BER exceeds a first predetermined threshold, associate gear
zero with a selected one of the first page stripe or the second
page stripe.

One embodiment includes an apparatus, wherein the appa-
ratus includes: a journaling engine configured to: store data in
pages of a memory device having multi-level cells, wherein
two or more bonded pages share a set of physical cells,
wherein a multi-level cell is configured to store a first bit for
a first page, a second bit for a second page, and a third bit for
a third page of the bonded pages; arrange the pages of the
memory device into a plurality of page stripes for storage of
data, wherein page stripes individually include one or more
pages or integer fractions thereof, wherein the bonded pages
belong to separate page stripes such that a first page stripe, a
second page stripe, and a third page stripe of a bonded page
stripe are related by having bonded pages of memory that
share multi-level cells, wherein an error correction code
(ECC) characteristic is selected for a page stripe and is appli-
cable to the pages of the page stripe, wherein the plurality of

25

30

35

40

45

10

page stripes include at least a fourth page stripe associated
with a first gear such that the fourth page stripe has a first
non-zero integer journaling cell slot capacity for data and a
first capacity for parity bits of a first error correction code
protective of data stored within the first page stripe, and a fifth
page stripe associated with a second gear such that the second
page stripe has a second non-zero integer journaling cell slot
capacity different from the first non-zero journaling slot
capacity and a second capacity for parity bits of the first error
correction code protective of data stored within the second
page stripe; use the first page stripe, the second page stripe,
and the third page stripe of the bonded page stripe to store
data; a first circuit configured to determine a first estimated bit
error rate (first BER) for the first page stripe, a second esti-
mated bit error rate (second BER) for the second page stripe,
and a third estimated bit error rate (third BER) for the third
page stripe during field use of the memory device, wherein
none of the first page stripe, the second page stripe, or the
third page stripe is associated with gear zero at the time of
determining the first BER, the second BER, and the third
BER, wherein gear zero corresponds to a zero journaling cell
slot capacity; and a second circuit configured to associate
gear zero with a selected one of the first page stripe, the
second page stripe, or the third page stripe when at least one
of the first BER, the second BER, or the third BER exceeds a
first predetermined threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

These drawings and the associated description herein are
provided to illustrate specific embodiments of the invention
and are not intended to be limiting.

FIGS. 1A and 1B illustrate a conventional flash page
arrangement.

FIG. 2A illustrates an example of a block diagram for a
solid-state drive controller according to an embodiment of the
invention.

FIG. 2B illustrates an embodiment of a flash array.

FIG. 3 illustrates an example of a page grid.

FIG. 4 illustrates an example of allocation of page stripe

data to grid codewords.

FIG. 5 illustrates an example of a process for page grid
encoding.

FIG. 6 illustrates a process for decoding using primary
parity.

FIG. 7 illustrates a process for decoding a page grid using
grid parity.

FIG. 8 illustrates an example of storing data.

FIG. 9 illustrates a process that the journaling engine can
perform to execute write requests.

FIG. 10 provides a structural view of the circuitry used
during the failure recovery also described in FIG. 13.

FIG. 11 illustrates a process of initialization.

FIG. 12 illustrates the operation of a virtual/physical trans-
lation table, which is used by the journaling engine.

FIG. 13 illustrates a process for failure recovery.

FIG. 14 illustrates a process for re-evaluation.

FIG. 15 illustrates an example of logical-to-physical map-
ping.

In this description, reference is made to the drawings in
which like reference numerals may indicate identical or func-
tionally similar elements.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Although particular embodiments are described herein,
other embodiments of the invention, including embodiments

US 9,081,701 B1

11

that do not provide all of the benefits and features set forth
herein, will be apparent to those of ordinary skill in the art. For
example, while illustrated in the context of multi-level flash
memory cells, the principles and advantages described herein
are applicable to other types of memory cells, such as single-
level flash memory cells, phase-change memory (PCM) cells,
memristor, spin-torque magnetic memory, 3-dimensional
NAND flash, and the like.

The techniques disclosed herein can be performed by hard-
ware, by firmware/software, or by a combination of hardware
and firmware/software. These techniques can be imple-
mented by execution of software modules by a computer
hardware system. Instructions for the software can be stored
in a tangible, non-transitory, computer-readable medium and
executed by a processor. At least a portion of hardware can be
implemented using a design based on a very high description
language (VHDL).

DEFINITIONS AND EXAMPLE

The following definitions and examples may be helpful in
understanding the specification. The examples are not
intended to be limiting.

xBy: xtimes 10 raised to the y-th power, that is x(10”). Thus
2.1E6 is 2,100,000, and SE-3 is 0.005.

RBER: Raw Bit Error Rate. RBER refers to the number of
differences (errors) between the data written to a region of
flash, and the data read from the flash, divided by the total
number of bits in that region.

UBER: Uncorrected Bit Error Rate. This refers to the num-
ber of differences (errors) between a set of data blocks sent to
aflash file system, and the contents of those data blocks when
read back from the flash file system, divided by the total
number of bits in the data block(s).

ECC: Error Correction Coding is a class of techniques in
which redundant information (parity) is added to information
(information bits) in such a way that if errors are subsequently
introduced, the original information bits can be recovered.
ECC can also stand for error correction code, corresponding
to the parity symbols themselves. An ECC has a correction
capability, which represents its ability to correct errors. In the
simplest form, this may be a certain number of bits T per ECC
codeword length N, but in complex codes the correction capa-
bility can be hard to represent succinctly, and is often
expressed in statistical terms, such as the RBER (for random
errors) that can be reduced to a desired UBER.

Metadata: Information stored by the file system for the
purpose of managing the storage and retrieval of user infor-
mation from the storage array. This information may include
the mapping of user allocation blocks to physical locations, as
well as information about the flash array itself. Metadata is a
broad term to describe information that is stored in flash, but
is not user data, ECC parity, or unused space.

Codeword: a set of K information symbols, plus P parity
symbols calculated from the information symbols by a pre-
determined formula. In the case of BCH or LDPC codes, a
symbol is 1 bit; in the case of RS codes it is m bits, where m
is the order of the code. The information bits can correspond
to a portion of user data stored in a journaling cell or to
metadata, which will be considered user data herein. How-
ever, for extra redundancy, a portion of the parity of an earlier-
in-time ECC code, such as the primary ECC can be part of the
“information bits” for a subsequent ECC, such as a grid
parity. The information block and the parity ECC of a code-
word do not need to be stored adjacent to one another.

Page Stripe: A grouping of one or more equally-sized flash
pages (or integer fractions of pages, such as %2 a page) which

10

15

20

25

30

35

40

45

50

55

60

65

12

can be read more-or-less simultaneously, and which can be
managed as a single region for the purpose of journaling. A
page stripe has one gear setting at any given time, which is
applied to all pages of the page stripe, and has a payload
capacity which is an integer number of journaling cells. A
page stripe should be made up of pages on different flash
planes or, possibly, different dies. For both latency and reli-
ability purposes, it is preferable to use pages residing on
different dice and attached to different data buses, but from a
power perspective it is better to use pages residing on differ-
ent planes of the same die. In one embodiment, a page stripe
comprises four pages on different planes of the same flash die,
each page comprising 8192+512 bytes such that a size of the
page stripe of this example is 34,816 bytes, which is allocated
among journaling cell slots and primary parity for the data
stored within the journaling cell slots. In another embodi-
ment, a page stripe comprises four pages, two residing on
different planes of a first die, and two residing on different
planes of a second die, each page comprising 8192+448
bytes. In another embodiment, a page stripe comprises a
single page of 4380 bytes. The size of a page stripe is not
limited to any particular size.

Page Grid: A grouping of associated page stripes (or pages
when page stripes are not used), wherein grid error protection
exists to protect the pages of the page grid. The grid error
correction is preferably an erasure code such as Reed
Solomon (RS) or Low-Density Parity-Check (LDPC),
capable of rebuilding data lost when a page of the page grid
becomes unreadable. In one embodiment, a Page Grid com-
prises 32 page stripes, each residing on a different flash die.

Block Stripe: A set of flash blocks from one or more dies in
a flash array that contains a set of complete page stripes.

Block Grid: A set of flash blocks from one or more dies in
a flash array that contains a set of complete page grids.

Flash die: A monolithic piece of semiconductor material
containing flash memory and control circuitry. A flash pack-
age typically contains between one and eight flash dies. Flash
dies are often referred to as logical units (LUNSs).

Gear: In the context of this disclosure, a “gear” or “ECC
characteristic” is a set of parameters specifying an error cor-
rection coding scheme, including one or more of the payload
capacity, the type and parameters of each component code,
the interleaving scheme, and parameters used for determining
whether the gear is appropriate for a particular situation.

Block: Depending on context, a “block” can refer to: the
smallest erasable unit within a flash memory (‘flash block”),
can refer to an amount of data over which an error correction
code is calculated (‘block code’), can refer to a block within
a flowchart or process, or can refer to an addressable unit of
input/output (‘SCSI block’) corresponding to a particular
virtual address or logical block address (‘LBA’) of a data
storage device, such as a hard disk, which is emulated by a
solid-state drive or a flash drive. It will be apparent to one of
ordinary skill in the art which is intended based on context.

Journaling Cell: The minimum unit of data for which the
journaling engine or flash translation layer makes reads from
or writes to the storage media. In one embodiment, a journal-
ing cell is 2120 bytes, comprising 2048 user data bytes, 32
bytes of data integrity field (DIF), 32 bytes of data integrity
extension (DIX), and 8 bytes of journaling engine metadata.
In one embodiment, the size of the journaling cell is fixed for
a given region of the storage media after initialization of that
media. In another embodiment, requiring more complex
implementation, the size of the journaling cell is fixed for
each logical storage volume, but may vary within page stripes

US 9,081,701 B1

13

shared between logical volumes, in which case the number of
parity bits in each codeword adjusts to accommodate the
differing journaling cell size.

High confidence: the probability of the opposite result is
less than a predetermined acceptable error probability, such
as, but not limited to, 1E-15, 1E-16, and the like.

Journaling cell slot: A memory space within a page stripe
allocated to the storage of a journaling cell.

Journaling Packet: The minimum unit of data for which the
journaling engine or flash translation layer has a logical-to-
physical mapping. A journaling packet is associated with a
particular logical address, such as a logical block address
(LBA), and stored within one or more consecutive journaling
cell slots within a page grid. In one embodiment, a journaling
packet holds a complete SCSI block or logical allocation
block and associated metadata. In one embodiment, a jour-
naling packet and logical allocation block are each of 4240
bytes and is stored in two journaling cell slots. For example,
the 4240 bytes can include 4096 bytes or normal data and 144
bytes of metadata. In alternative embodiments, when the jour-
naling cell slots and logical allocation blocks are the same
size, then a journaling cell can be equivalent to a journaling
packet.

Bonded pages: Pages that share multi-level memory cells.

Bonded page stripes: Page stripes that share multi-level
memory cells.

MOD: the modulo operator under modular arithmetic,
denoting the remainder when the left operand is divided by
the right operand. Thus 32 MOD 10=2.

DIV: the integer divide operation, calculated by dividing
the left operand by the right operand, and rounding down to
the nearest integer. Thus 32 DIV 10=3.

Journaling File Systems or Flash Translation Layer

Flash memory based storage systems can suffer from write
amplification. In flash memory, the minimum erasable block
size, typically 1 MB or more, is much larger than on hard
disks using platters. A file system, which is typically part of an
operating system of a host, exchanges data with a data storage
device in different kinds of blocks, which should not be
confused with storage blocks or erase blocks, which corre-
spond to the minimum erasable unit in a flash device. Data is
transferred to and from a host and a block device, such as a
hard disk drive or other storage device, in units of data termed
allocation blocks herein. An allocation block is also known as
a logical block. These allocation blocks can correspond to
“disk sectors” in a hard disk drive. Each of these allocation
blocks has a virtual address. A flash translation layer is used
so that a flash drive can emulate a hard disk drive by trans-
ferring data to and from the host in allocation blocks as
expected by the file system. An example of a flash translation
layer is described in U.S. Pat. No. 5,404,485 to Amir Ban, the
disclosure of which is incorporated by reference in its entirety
herein.

An allocation block is a sequence of words, such as bits or
bytes or multiples thereof, of a certain block size, and is the
minimum unit of data that is transferred to or from a host and
a data storage device, such as a flash drive or a hard disk drive.
While the allocation block size can vary among data storage
devices, the allocation block size is always fixed for a par-
ticular data storage device. Examples of an allocation block
size that have been used in the past include 512, 520, 528,
4096, and 4224 bytes. In one embodiment, the allocation
block size is 4240 bytes. However, other allocation block
sizes are possible. The data storage device can communicate
its allocation block size and number of available allocation
blocks to the host in response to low-level commands from
the host.

40

45

50

55

14

The number of address bits can vary in a very wide range.
For example, the ATA-1 standard has 28-bit addresses and the
ATA-6 standard has 48-bit addresses. Typically, an interface
standard requires that the virtual address start at O and be
contiguous up to the last allocation block available on the
drive.

To modify a piece of data in flash memory, an entire storage
block of the flash memory containing the data is read, the
entire storage block erased, and then some or all of the data
can be modified and written back. If the flash memory is
mapped into a conventional file system without a flash trans-
lation layer, in which the physical address of data on the flash
memory is determined by the apparent address or logical
block address in the user file system, this disadvantage can
lead to relatively large amounts of reading or writing when
files are being altered, which slows down write operations.
Other problems also arise. For instance, if a few files are
regularly updated, one part of the flash memory may wear out
long before others. Even when wear leveling is utilized, such
erase and programming operations can drastically shorten the
life of a solid-state drive or flash drive.

Write amplification describes a ratio between user data
written, for example, one 512 byte disk sector, and the total
amount of data that is actually written to the flash memory.
For example, when an entire block, for example, 256 pages of
8 sectors each, is rewritten to alter one sector, then the write
amplification is 2048. Block sizes and write amplification can
vary from the example shown. However, this very large value
for write amplification means that writes to the SSD will take
arelatively long time, and due to the write amplification, wear
out the drive quite relatively quickly, which makes physically
addressed SSDs impractical for any job that involves modi-
fying small amounts of data on a regular basis.

To solve these and other problems, a journaling file system
or flash translation layer (FTL) can be used, in which data to
be written is stored to the flash in essentially the order it
arrives, and a mapping table between the “apparent address”
or virtual address and the “actual physical address™ is main-
tained by the flash controller. The foregoing is a simplified
description, but should serve to help understand the principles
and advantages of certain embodiments of the invention.

Under a journaling file system, write amplification factors
approaching of 1/(2u-u"2) can be achieved, in which u is the
proportion of the drive that is not currently full of data. Main-
taining write amplification at a relatively low value through-
out the life of a device can help achieve high throughput, good
flash life expectancy, and low thermal dissipation.

Error Correction Coding

One way of improving the performance of an ECC solution
is to expand the size of the error correction block (information
portion of a codeword) over which the ECC is applied. Two-
dimensional “Turbo Product Codes”, with iterative decode
are a way of creating very large block codes while maintain-
ing a reasonable circuit size and power.

However, if the information portion of a turbo codeblock is
substantially larger than a typical user data request, the result-
ing solution will suffer from high latency and wasted through-
put. This occurs because in order to decode even a small
portion of a codeword, the entire codeword must still be read
from flash storage. The latency goes up because the ECC
decode operation cannot be completed until the entire block is
read. Also, this additional data access can lower throughput
for the SSD.

The illustrated embodiment replaces a conventional 1-di-
mensional BCH ECC code with a 2-dimensional turbo code
formed from block ECC codes. In one embodiment, the 2
dimensions (for primary and grid ECC) are each orthogonal

US 9,081,701 B1

15

to each other such that a codeword of one dimension shares at
most one symbol with a codeword of another dimension. In
another embodiment, the primary and grid codewords are
either disjoint or at least partially orthogonal to each other.
Table I summarizes primary and grid error correction char-
acteristics according to one embodiment of the invention.

TABLE I

Type of Error Correction Data Protection

within a page stripe
within a page grid

Primary
Grid

Orthogonality refers to the way in which one set of code-
words and another set of codewords relate. In particular, given
a codeword from a first set and a codeword from a second set,
orthogonality refers to the number of symbols at which the
codewords intersect. Two codeword sets are exactly orthogo-
nal if they intersect at exactly one symbol. To the extent that
2 codewords intersect at more than one symbol, they are only
partially orthogonal. When two codewords do not share any
symbols, they are disjoint. Symbol sets are orthogonal if all
members from a first set are orthogonal or disjoint with
respect to a second set. Note that a symbol for a BCH code or
a LDPC code is a bit, while for an RS code a symbol is m bits,
where m is the order of the code.

A high degree of orthogonality reduces the chances that a
small pattern of errors is uncorrectable by the ECC scheme. In
one embodiment, the orthogonality of the primary and grid
dimensions are implemented by selecting data for each pri-
mary and grid codeword based on a predetermined interleave
pattern.

For example, in the illustrated embodiment, the block data
portion of the primary codewords can be taken sequentially as
is common practice for ECC on flash pages. The block data
portion of the grid codewords can be taken by, for example,
taking a bit of data, then skipping an amount of data at least
equal to the block data size of a primary codeword to take the
next bit of data for the block data portion of the grid code-
word, and so on, until the block data portion of the grid
codeword is filled. The skipping of data can be implemented
by utilizing an appropriately sized skip factor in interleaving.
The subsequent grid codeword can retain the pattern with a
one bit or more shift to capture new data, and so on.

As will be explained later, decoding of the foregoing struc-
ture can be quite efficient. For the usual case in which the data
is relatively uncorrupted, primary ECC decoding alone can
confirm good data or correct the correctable errors such that
data can usually be retrieved with relatively low latency.
However, additional error correction is available to be
invoked as needed, giving the best of low latency and more
robust error correction.

One embodiment of the invention avoids wasted-through-
put and latency problems by choosing the primary ECC such
that it can be decoded using hard-decision decoding, with
only part of the total page stripe available, and with only a
single read, at least 99% of the time. Most of the time, only the
primary codewords containing the user-requested data need
to be fetched, and the user data can be released after only a
primary decoding operation. Only when the primary decod-
ing operation is unable to perform the correction with high
certainty does a higher latency decode operation need to be
invoked. The primary ECC and its decode algorithm should
be carefully chosen so that, even in the presence of relatively
high bit error rate, the primary ECC can correct the errors
present with a relatively high probability, for example, in one

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiment, at least 99% of the time, and almost never
performs a “false decode.” Other values are applicable, such
as, but not limited to, at least 99.9% of the time (if latency or
throughput are highly prioritized vs. flash utilization effi-
ciency), at least 95% of'the time, or at least 90% of the time (if
flash utilization efficiency is highly prioritized relative to
latency and throughput). Typically, it will be desirable to keep
an expected amount of latency relatively low. The average
amount of latency can be estimated by summing (a) the length
of time that it takes to read the data and perform primary
hard-decision decoding; (b) the probability that the data is not
released after primary decoding times the length of time that
it takes to read a full page grid and perform the primary/grid
iterative decoding operation.

A false decode occurs when the primary ECC decoding
process deduces that it has properly corrected the data, when
in fact it has added errors. If a false decode occurs without
detection, incorrect data would be released, which is an
occurrence that should be kept to a very low level. For
example, the false decode rate should be less than 1E-20.

A desired maximum rate of false decodes can be guaran-
teed by adding a suitable CRC chosen based on a modeled
false decode probability, plus suitable design margin. In the
event that the initial pass of primary decoding cannot correct
the requested data, then additional reads with different flash
media settings may be made, and soft decoding techniques
employed. If those techniques are also unable to correct the
requested data, then additional redundancy, such as grid par-
ity, can be used to recover the data. Grid decoding is time-
consuming, so the gears should be managed to ensure it is a
rare event, for example no more than 1 per 1E6 decodes.

FIG. 2A illustrates an example of a block diagram for a
solid-state drive controller 200 according to an embodiment
of'the invention. FIG. 2B illustrates an example of an array of
flash die. It will be understood that the various blocks or
circuits of the SSD controller 200 can be rearranged, com-
bined, and/or further divided into smaller blocks. In addition,
the SSD controller 200 can be integrated into a single inte-
grated circuit or can be embodied by multiple integrated
circuits. The illustrated SSD controller 200 includes a storage
communications interface 202, a flash management proces-
sor 204, a random access memory (RAM) 206, the journaling
engine 208, the ECC encoder/decoder 210, a flash stripe
controller 212, flash protocol controllers 214, and flash
memory devices 216a-216d. The SSD controller 200 is out-
side of the flash memory devices 216 and is not the same as
the controllers within the flash memory devices 216a-2164.
In one embodiment, there are at least 16 different flash
memory devices 216a-216d in the storage array.

The storage communications interface 202 handles com-
munication with a host, such as with an input/output circuit of
a server. The storage communications interface 202 can con-
form to any of a variety of protocols, such as small computer
system interface (SCSI), PCI-Express, serial ATA (SATA),
external SATA (eSATA), universal serial bus (USB), IEEE-
1394 (FireWire), or the like. In one embodiment, the SSD
controller communicates with the host at a minimum of
50,000 allocation blocks per second. The flash management
processor 204 can perform firmware functions, translation
layer functions, maintains the association between pages and
the gear used, initiates initialization bit error rate commands,
and the like. The RAM 206, which can be either SRAM or
DRAM, can be used to temporarily hold, that is, cache, data.
Other components of the SSD can use the RAM 206 as
needed for scratchpad memory. For example, a page, page
stripe, or page grid can be read into the RAM 206, and the
interleaving/de-interleaving and error correction decoding

US 9,081,701 B1

17

operations can performed on the data transferred to the RAM
206. The RAM 206 is typically volatile memory and should
accordingly be used only for temporary storage. The journal-
ing engine 208 performs the journaling or flash translation
layer activities. The ECC encoder/decoder 210 performs
encoding and decoding of information data and ECC parity
for both primary parity and grid parity. The flash stripe con-
troller 212 provides services, takes a slice of data that has
been encoded and distributes it among the n lanes and returns
an acknowledgement when done. In the illustrated embodi-
ment, 4 lanes 218a-218d are shown.

When performing a read, the flash stripe controller 212
retrieves the corresponding data and reassembles a page of
data. Typically, the data buses for the flash memory devices
216a-216d are arranged in lanes, such as lanes of 8 bits wide
each. For example, these flash memory devices can corre-
spond to flash memory chips or to packaged flash memory
devices. Flash protocol controllers 214 can provide registers
for read and/or write caching, can provide address informa-
tion, can provide timing signals, read and write signals, and
the like. In the illustrated embodiment, a controller from the
flash protocol controllers 214 is instantiated for each bus.

In one embodiment, the SSD controller 200 is imple-
mented in an integrated circuit, such as by an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), which can include firmware or software
instructions stored in a tangible, non-transitory computer-
readable medium executed by a processor, or in a block of
hardware shared by several decoders. In one embodiment, the
ECC encoders and decoder for both primary and grid parity
are performed by dedicated hardware, and gear selection is
performed by firmware. In one embodiment, portions that are
not expected to be used frequently, such as grid parity recov-
ery, may advantageously be implemented in firmware or soft-
ware, or in a block of hardware shared by several decoders. In
addition, it should be noted that the disclosed techniques are
applicable to use “in the field,” such as in a server, and accord-
ingly differ from techniques used by an engineer during a
design phase or during manufacturing and test. Further, it
should be noted that an integrated circuit for the SSD con-
troller 200 is separate from the flash memory devices 216a-
216d.

FIG. 3 illustrates an example of a page grid 300. In the
illustrated example, 32 page stripes form the page grid. For
example, a page stripe 0 has a capacity of 14 journaling cells,
a page stripe 1 has a capacity of 0 journaling cells, a page
stripe p has a capacity of 15 journaling cells, and so forth. As
can be seen in FIG. 3, the amount of primary parity available
in a page stripe varies based on the journaling cell capacity.
However, note that when the page stripe has a capacity of 0
journaling cells, the page stripe is identically empty of both
journaling cells and primary parity. Dashed boxes indicate
storage of a journaling packet in a situation in which a jour-
naling packet is stored across two journaling cells. It is pos-
sible for a journaling packet to span two page stripes, but
because page stripes addresses have simple arithmetic rela-
tionships, the address of the first journaling cell of a journal-
ing packet, together with the page stripe capacity informa-
tion, suffices to locate all journaling cells of a journaling
packet.

Together, a group of F flash dies make up the flash array for
a lane group. Various pages from memory are grouped into
page stripes and into page grids. A page stripe includes one or
more pages that have the same page index and the same block
index, except for the part of the block address that denotes a
plane or LUN. In one embodiment, a page stripe includes 4 or
more pages. Preferably, a page stripe includes 4 pages that can

10

15

20

25

30

35

40

45

50

55

60

65

18

be accessed at substantially the same time from the same die.
In another embodiment, a page stripe includes 2 pages each
from 2 separate die. The number of page stripes can vary in a
wide range and an applicable number will be readily deter-
mined by one of ordinary skill in the art.

Each page stripe is grouped with page stripes on other dice
sharing the same page and block index to form a page grid. A
page grid can span up to Wg page stripes. In one embodiment,
Wg is 32, but can vary in a very broad range.

A page stripe can hold information, such as user data or
grid parity, and can hold primary ECC parity protective of the
information. Each page stripe in a page grid has a capacity for
the information, measured in journaling cell slots, is deter-
mined by the gear assigned to that page stripe. In one embodi-
ment, the capacity of a page stripe is an integer multiple of
journaling cell slots. A slot corresponds to a space. In an
alternative embodiment, the capacity of a page stripe canbe a
non-integer. In the illustrated examples, the capacity ofa page
stripe is an integer multiple of journaling cells.

In one embodiment, each journaling cell slot can store one
journaling cell. However, each journaling cell can hold one or
more journaling packets. In one embodiment, a logical block
of data corresponds to a journaling packet. For example, in
one embodiment, a journaling packet and a journaling cell are
the same size, but in another embodiment, the journaling
packet and the journaling cell can be different sizes, such as 2
journaling packets for each journaling cell. The use of the
journaling packet can permit the more efficient utilization of
space within page stripes and page grids. However, it will be
appreciated that a journaling packet is not necessary when the
journaling packet and the journaling cell are the same size.

The capacity of a particular page stripe depends on the gear
assigned to the page stripe. The gear is selected from a plu-
rality of gears includes gear zero (GO0), which specifies a
capacity of zero journaling cells. Other gears of the plurality
have capacities greater than zero. By varying the capacity of
journaling cells, the amount of memory space remaining in
the page stripe varies, which in turned is used for the storage
of primary ECC parity and affects the correction capability of
the primary ECC. In one embodiment, page stripes in gear 1
hold 16 journaling cells, those in gear 2 hold 15 journaling
cells, those in gear 3 hold 14 journaling cells, and those in
gear 4 hold 12 journaling cells as illustrated in Table II.

TABLE II
Gear # of journaling cells
Gear 0 0
Gear 1 16
Gear 2 15
Gear 3 14
Gear 4 12

Other capacities will be applicable and will be readily
determined by one of ordinary skill in the art. For example,
the capacities can vary based on the size of the journaling
cells, the size of the page stripes, the estimated bit error rates
of the media underlying the memory devices, the desired
correction capability, and the like.

The total journaling cell capacity of the page grid corre-
sponds to the sum of the capacities of its constituent page
stripes and should be an integer multiple regardless of
whether or not the underlying page stripes have capacities
that are integer multiples. However, some journaling cell slots
of the page grid are reserved for the storage of grid parity so
that the effective capacity Cg of the page grid is the sum of the
individual capacities of its constituent page stripes minus a

US 9,081,701 B1

19

number Pg of journaling cell slots reserved for grid parity. In
one embodiment, the gear associated with each page stripe of
a page grid is independent selected from the others.

Grid parity data is protective of the data across the page
grid. Accordingly, the data to be stored in the page grid should
be known before the grid parity data can be finalized. How-
ever, the grid parity data can be partially computed as data is
allocated to the various page stripes of the page grid. In one
embodiment, the grid parity data is allocated to the last jour-
naling cell slots of a page grid for convenience. In one
embodiment, the number Pg of journaling cell slots reserved
for grid parity is 20 when recovery from a complete die failure
is desired, and 8 when it is not.

When journaling cells are to be written to the flash
memory, the journaling cells are assigned to a page stripe, up
to a maximum number determined by the page stripe capac-
ity, which is determined by the corresponding gear for the
page stripe. Primary parity bits for ECC is calculated for the
page stripe according to its gear. As each page stripe is filled,
it may be written to the appropriate flash. It will be understood
that data can be maintained in RAM 206 until ready to be
programmed to the appropriate flash.

One embodiment uses a lookup table to manage the loca-
tion oflogical blocks. For example, a lookup table caninclude
the following: alogical block address for an index, a page grid
number (if there is more than one page grid present), a page
stripe number, and a journaling cell number. The numbers can
correspond to counts and/or address offsets. The same table or
a separate table can store the gear corresponding to the page
stripe. When journaling packets are used and are larger than
journaling cells, such as when a journaling packet is stored in
two journaling cell slots, no separate entry is needed for the
second journaling cell slot as the SSD controller 200 can
standardize on having the journaling packet stored in con-
secutive journaling cell slots.

The grid parity comprises an erasure code, such as a Reed-
Solomon code, and is stored in the journaling cells allocated
to grid parity. Grid parity permits recovery of data in situa-
tions in which the page stripe’s primary parity cannot provide
recovery by itself. A set of Wt grid codewords is defined, each
codeword having a total size Nt symbols, and a payload of Kt
symbols. The bits of each page stripe, including primary ECC
parity, are assigned to grid codewords. In the illustrated
embodiments, the grid parity of the grid codewords is stored
in the final Pg journaling cell slots of a page grid, which are in
turn protected by primary parity, just as if they contained
regular user data.

The value Wt and the assignment sequence are chosen such
that each page stripe has no more than (Nt-Kt) symbols in
each grid codeword, each symbol being Mt bits, and that the
intersection of any primary codeword with any grid codeword
contains the same number of symbols as any other, plus or
minus one symbol.

In one embodiment, the grid error correction code is a
Reed-Solomon code constructed on Galois Field GF(2"10 or
2'9), asymbol is Mt=10 bits, Wg is 32 page stripes, each page
stripe comprises four pages of up to 9472 bytes each, and Wt
is 1080 codewords.

In one embodiment, each byte of data is striped bitwise
across eight grid codewords for interleaving, starting from
codeword 0. Additional bytes are allocated until each of the
eight grid codewords has a complete Mt-bit symbol. The next
Mt bytes are striped across the next eight codewords, and so
onuntil every grid codeword has one complete symbol. Then
the process starts again, filling the second symbol of each grid
codeword. When the end of a page stripe is reached, any
unfilled bits in the 8 codewords are assumed to be zero.

10

15

20

25

30

35

40

45

50

55

60

65

20

Page Stripes in Gear Zero

Advantageously, embodiments of the invention can allo-
cate a journaling cell storage capacity of zero to a page stripe.
When a page stripe is associated with Gear zero (GO), the
page stripe has zero capacity for journaling cells. Page stripes
may be set to Gear zero for many reasons, such as, but not
limited to, the following: (a) The page stripe resides on a die,
plane, or block that is known to have failed. (b) The page
stripe resides on a factory bad block. (¢) The raw bit error rate
(RBER) of the page stripe is too high for any ECC gear to
decode with high confidence. (d) It is not advantageous for
datato be stored on the page stripe because of its impact on the
bit error rate of other pages. For example, in MLC NAND
flash with two bits stored in each flash cell, one on each of two
“paired” or “bonded” pages. Programming one page of the
pair with data using a gear with a non-zero journaling cell
capacity, and the other with a fixed pattern (or not at all) with
gear zero can result in amuch reduced RBER on the page with
the data. When flash is severely degraded, using just one page
of a pair, with the other set to gear zero, can allow continued
use of the flash cell when otherwise both pages would be
retired. (e) A grid size of smaller than Wg has been chosen.
For example, if 1-for-8 die failure protection is desired, and
Wg is 32, then 24 page stripes of each page grid, such as the
last 24 page stripes, can be set to gear zero to implement the
reduction in size. (f) The die on which the page stripe would
have resided is not actually present in the system, for
example, when a finer granularity of initial op is used. For
example, if the total number of page stripes is not an integer
multiple of Wg, then there are leftover page stripes with fewer
than Wg page stripes. Ordinarily, these lefiovers could not be
used, but by associating the not present page stripes with gear
zero, the other leftover page stripes can be used.

In one embodiment, the following rules apply to a GO page
stripe: (a) The GO page stripe has no journaling cell slots and
cannot hold journaling cells or grid parity cells. Ifthe GO page
stripe is written at all, a determinable pattern should be used,
such as all zeroes, all ones, or a substantial duplicate of the
data on a corresponding bonded page stripe. It should be
noted that there can also exist mapping between the 2 or 3 bits
to store on a ML.C cell and the corresponding electrons stored
in the floating gates of the MLC cell. (b) The GO page stripe
should not be read. (¢) The Grid ECC treats the contents of GO
page stripe as identically zero, for both encoding and decod-
ing. Grid ECC codewords containing symbols from a GO
Page Stripe are effectively shortened by the corresponding
number of symbols.

Examples of Grid Arrangements

As illustrated in FIGS. 2B and 3, in one embodiment, page
stripes are arranged across the L lanes, with D*L. dies total.
For the flash array, D indicates the depth of the flash memory
as shown in FIG. 2B and can be a relatively large number
depending on the size of the array of flash dice. In the illus-
trated embodiments, the pages of a page stripe are within a
particular die. However, in alternative embodiments, the
pages of a page stripe can be spread to two or more dice.

A page stripe p can be located on lane (p MOD L), where
MOD indicates modulo such that p MOD L is the remainder
of p divided by L. For example, L can be 4 in one embodi-
ment. The page stripe’s die index is ((p DIV L)+Sd)MOD D,
where Sd is a starting die index and DIV indicates the quotient
of p divided by L, rounded down. The die index can be
converted to a Chip Enable (CE) and LUN index by any
convenient one-to-one mapping; in one embodiment this
mapping is Iun_index=die_index MOD 2,
CE_index=die_index DIV 2.

US 9,081,701 B1

21

A 32-element page grid (Wg=32), implemented 4 lanes
wide and 8 dies deep, with example capacities, determined by
the example gear setting of Table 11, is shown. In the illus-
trated example, the grid parity has a size of 20 journaling cells
per page grid.

Lane

Die 0 1 2 3

0 Page Stripe 0 Page Stripe 1 Page Stripe 2 Page Stripe 3
Gear 1 Gear 2 Gear 1 Gear 3
Capacity 16 Capacity 15 Capacity 16 Capacity 14

1 Page Stripe4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 3 Gear 4
Capacity 16 Capacity 16 Capacity 14 Capacity 12

2...5

5 Page Stripe 24 Page Stripe 25 Page Stripe 26 Page Stripe 27
Gear 1 Gear 1 Gear 3 Gear 3
Capacity 16 Capacity 16 Capacity 14 Capacity 14

7 Page Stripe 28 Page Stripe 29 Page Stripe 30 Page Stripe 31
Gear 3 Gear 4 Gear 1 Gear 4
Capacity 14 Capacity 12 Capacity 8 user Capacity

+8 Grid Parity 12 Grid Parity

Ifonly 24 dies were populated, the page grid of size Wg=32
can be arranged as follows:

Lane

Die 0 1 2 3

0 Page Stripe 0 Page Stripe 1 Page Stripe 2 Page Stripe 3
Gear 1 Gear 2 Gear 1 Gear 3
Capacity 16 Capacity 15 Capacity 16 Capacity 14

2 Page Stripe4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 3 Gear 4
Capacity 16 Capacity 16 Capacity 14 Capacity 12

3...5

6 Page Stripe 20 Page Stripe 21 Page Stripe 22 Page Stripe 23
Gear 1 Gear 1 Gear 3 Gear 3
Capacity 16 Capacity 16 Capacity 8 user Capacity 14

+6 Grid Parity ~ Grid Parity

N/A Page Stripe 24 Page Stripe 25 Page Stripe 26 Page Stripe 27
Gear 0 Gear 0 Gear 0 Gear 0
Capacity 0 Capacity 0 Capacity 0 Capacity 0

N/A Page Stripe 28 Page Stripe 29 Page Stripe 30 Page Stripe 31
Gear 0 Gear 0 Gear 0 Gear 0
Capacity 0 Capacity 0 Capacity 0 Capacity 0

It Page Stripe 7 was no longer usable even under the high-
est gear, that is, the gear having the smallest non-zero jour-
naling cell capacity, or if Die 2 of Lane 3 had failed, or for
some other reason it is not desirable to store data using Page
Stripe 7, then the page grid can be arranged as follows:

Lane

Die 0 1 2 3

0 Page Stripe 0 Page Stripe 1 Page Stripe 2 Page Stripe 3
Gear 1 Gear 2 Gear 1 Gear 3
Capacity 16 Capacity 15 Capacity 16 Capacity 14

2 Page Stripe4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 3 Gear 0
Capacity 16 Capacity 16 Capacity 14 Capacity 0

7 Page Stripe 24 Page Stripe 25 Page Stripe 26 Page Stripe 27
Gear 1 Gear 1 Gear 3 Gear 3
Capacity 16 Capacity 16 Capacity 14 Capacity 14

10

15

20

25

30

35

40

45

50

55

-continued
Lane
Die 0 1 2 3
8 Page Stripe 28 Page Stripe 29 Page Stripe 30 Page Stripe 31
Gear 3 Gear 4 Gear 1 Gear 4
Capacity 14 Capacity 12 Capacity 8 user Capacity 12
+8 Grid Parity ~ Grid Parity

Similarly, if page stripes 30 and 31 were to subsequently
fail, the page grid can be arranged as follows:

Lane

Die 0 1 2 3

0 Page Stripe 0 Page Stripe 1 Page Stripe 2 Page Stripe 3
Gear 1 Gear 2 Gear 1 Gear 3
Capacity 16 Capacity 15 Capacity 16 Capacity 14

2 Page Stripe 4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 3 Gear 0
Capacity 16 Capacity 16 Capacity 14 Capacity 0

7 Page Stripe 24 Page Stripe 25 Page Stripe 26 Page Stripe 27
Gear 1 Gear 1 Gear 3 Gear 3
Capacity 16 Capacity 16 Capacity 14 Capacity 14

8 Page Stripe 28 Page Stripe 29 Page Stripe 30 Page Stripe 31
Gear 3 Gear 4 Gear 0 Gear 0
Capacity 6 user Capacity 12 Capacity 0 Capacity 0
+8 Grid parity Grid Parity

If more than Wg dies are populated, then multiple page
grids with the same page/block address, but having different
page grid starting indexes can advantageously exist. In the
example below, a first page grid (grid 0) is 4 lanes by 16 dies
and a second page grid (grid 1) is 4 lanes by 15 dies. The use
of gear 0 provides an efficient way to adapt a page grid to the

available die of a solid-state drive.

Die Lane

Index O 1 2 3

0 Grid 0 Start Page Stripe 1 Page Stripe 2 Page Stripe 3
Page Stripe 0 Gear 2 Gear 1 Gear 3
Gear 1 Capacity 15 Capacity 16 Capacity 14
Capacity 16

1 Page Stripe 4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 3 Gear 4
Capacity 16 Capacity 16 Capacity 14 Capacity 12

2...6

7 Page Stripe 28 Page Stripe 29 Page Stripe 30 Page Stripe 31
Gear 3 Gear 4 Gear 1 Gear 4
Capacity 14 Capacity 12 Capacity 8 user Capacity 12

+8 Grid Parity ~ Grid Parity

8 Grid 1 Start Page Stripe 1 Page Stripe 2 Page Stripe 3
Page Stripe 0 Gear 1 Gear 0 Gear 3
Gear 1 Capacity 16 Capacity 0 Capacity 14
Capacity 16

9...13

14 Page Stripe 24 Page Stripe 25 Page Stripe 26 Page Stripe 27
Gear 1 Gear 1 Gear 3 Gear 3
Capacity 16 Capacity 16 Capacity 6 User Capacity 12

+8 Grid Parity ~ Grid Parity

N/A Page Stripe 28 Page Stripe 29 Page Stripe 30 Page Stripe 31
Gear 0 Gear 0 Gear 0 Gear 0
Capacity 0 Capacity 0 Capacity 0 Capacity 0

US 9,081,701 B1

23

132 dies were populated, but it was desired to have 1-for-8
protection against die failure, the page grid can be arranged as
follows:

0 Grid 0 Start Page Stripe 1 Page Stripe 2 Page Stripe 3
Page Stripe 0 Gear 2 Gear 1 Gear 3
Gear 1 Capacity 15 Capacity 16 Capacity 14
Capacity 16

1 Page Stripe 4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 1 Gear 4
Capacity 16 Capacity 16 Capacity 8 user Capacity 12

+8 Grid Parity Grid Parity
N/A Grid 0 Page Stripes 8 . . . 31:Gear 0 Capacity 0

2 Grid 1 Start Page Stripe 1 Page Stripe 2 Page Stripe 3
Page Stripe 0 Gear 2 Gear 1 Gear 3
Gear 1 Capacity 15 Capacity 16 Capacity 14
Capacity 16

3 Page Stripe 4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 1 Gear 3
Capacity 16 Capacity 16 Capacity 10 user Capacity 14

+6 Grid Parity Grid Parity
N/A Grid 1 Page Stripes 8 . . . 31:Gear 0 Capacity 0

4 Grid 2 Start Page Stripe 1 Page Stripe 2 Page Stripe 3
Page Stripe 0 Gear 2 Gear 1 Gear 3
Gear 1 Capacity 15 Capacity 16 Capacity 14
Capacity 16
5 Page Stripe 4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 2 Gear 2
Capacity 16 Capacity 16 Capacity 10 user Capacity 15
+5 Grid Parity Grid Parity
N/A Grid 2, Page Stripes 8 . .. 31:Gear 0 Capacity 0
6 Grid 3 Start Page Stripe 1 Page Stripe 2 Page Stripe 3
Page Stripe 0 Gear 2 Gear 1 Gear 3
Gear 1 Capacity 15 Capacity 16 Capacity 14
Capacity 16
7 Page Stripe 4 Page Stripe 5 Page Stripe 6 Page Stripe 7
Gear 1 Gear 1 Gear 1 Gear 2
Capacity 16 Capacity 16 Capacity 11 user Capacity 15
+5 Grid Parity Grid Parity
N/A Grid 3, Page Stripes & . .. 31:Gear 0 Capacity 0

Allocation of Page Stripe Data to Grid Codewords

FIG. 4 illustrates an example of allocation of page stripe
data to grid codewords. As each symbol of each grid code-
word is filled, the grid parity for that codeword is updated and
stored. When the last journaling cell of user data is processed,
the grid parity can be finalized. In one embodiment, this grid
parity is broken up for storage into journaling cell slots of the
same size as journaling cell slots for journaling cells of user
data, such as slots of 2048 bytes, 2080 bytes, 2112 bytes or
2120 bytes. Of course, other journaling cell slot sizes will be
applicable. The grid parity is processed by the primary
encoder to generate primary parity bits over the grid parity,
and can be programmed to the flash. Note that the journaling
engine 208 should leave enough journaling cell slots at the
end of each page grid so that, at the current gear settings, there
is room for programming of the grid parity.

FIG. 5 illustrates an example of an overview process for
page grid encoding. It will be appreciated by the skilled
practitioner that the illustrated process can be modified in a
variety of ways. For example, in another embodiment, vari-
ous portions of the illustrated process can be combined, can
be rearranged in an alternate sequence, can be removed, or the
like. While page grid encoding is illustrated, some aspects of
page stripe encoding are also discussed. Other aspects of both
page stripe and page grid encoding will be described in
greater detail later in connection with FIG. 9. The process can
be implemented by software or firmware executed by a pro-
cessor, by hardware, or by a combination of both software or
firmware and hardware. For example, the process can be
performed by the SSD controller 200 (FIG. 2A). It will be
appreciated by the skilled practitioner that the illustrated pro-

10

15

20

25

30

35

45

50

55

60

65

24

cess can be modified in a variety of ways. For example, in one
embodiment, various stages can be implemented in a pipe-
lined fashion and/or performed in parallel. For example, in
another embodiment, various portions of the illustrated pro-
cess can be combined, can be rearranged in an alternate
sequence, can be removed, or the like. At the start of the
process, it is assumed that, when variable, a particular gear
with non-zero journaling cell capacity has been selected for
the various page stripe.

The process begins in a stage 502 in which the process
receives a page stripe write command and the journaling
packet(s) to be written to the page stripe. The page stripe write
command and the data can be received from a journaling
engine 208 (FIG. 2A). As will be explained later, data can also
correspond to error correction code from earlier-in-time
encoding. The process advances from the stage 502 to a stage
506. The capacity in terms of the number of journaling cell
slots of a page stripe can be pre-arranged based on the gear
selected for the page stripe.

In the stage 506, the journaling packets are arranged into
journaling cells for writing to the page stripe. For example, a
journaling packet can span two journaling cells. In addition,
in some embodiments, a journaling packet can span the last
journaling cell of one page stripe and the first journaling cell
of the next page stripe. At the stage 506, the various page
stripes of the page grid can be temporarily held in RAM 206
(FIG. 2A), that is, scratchpad memory, until programmed to
the flash, which occurs later in a stage 532. Lookup tables
storing the association between a logical block/journaling
packet and a page grid number, page stripe number, and
journaling cell number can also be updated. The process
advances from the stage 506 to the stage 512.

In the stage 512, the primary parity bits of ECC code are
calculated by the ECC Encoder/Decoder 210 (FIG. 2A) and
inserted into the page stripe, which at the stage 512 can be the
version of the page stripe stored in RAM 206 (FIG. 2A). In
one embodiment, the primary ECC code is a LDPC code.
However, other codes, such as BCH codes, can be used. In the
illustrated embodiment, the primary parity is then inserted
into the page stripe in the space remaining after the journaling
cells. The process advances from the stage 512 to a stage 516,
a stage 518, and a stage 520 until the last page stripe has been
processed by the stage 520, at which point the process
advances from the stage 512 to a stage 530.

The stages from the stage 516 through the stage 520 apply
to page grid processing, which operates across a span of two
ormore page stripes, such as four page stripes. The grid parity
is protective of the primary codewords, for example, user data
stored in journaling cell slots and corresponding primary
parity.

In one embodiment, each bit is assigned to a grid code-
word. In one embodiment, in which each grid contains Wt
grid codewords based on a Reed-Solomon error correction
code defined over Galois field gf(2"Mt) for a particular gear,
data from each primary codeword is grouped into symbols of
size 2"Mt, and assigned on a symbol-wise round-robin basis
to the grid codewords, such that each grid codeword has a
substantially equal number of bytes (plus or minus 1) from
each primary codeword. In one embodiment, while data from
the primary codewords is rearranged to form the information
portions of the grid codewords, only the parity portions of the
grid codewords are stored as the grid parity. The rearranged
bits are passed to the stage 518. Padding of implied zeroes
may be used to reach an integer number of symbols, accord-
ing to the known techniques of shortening RS codewords by
partial symbols. The stage 516 preferably includes interleav-
ing.

US 9,081,701 B1

25

In the stage 518, the assembled bits are treated as the
information bits of a grid ECC code. In a preferred imple-
mentation, the grid ECC code is an RS code. In the stage 518,
the ECC parity bits corresponding to the information bits of
the assembled grid codewords are calculated. In one embodi-
ment, the operation of the stage 512 is as follows. A scratch-
pad memory of sufficient size for the parity of the grid code-
words of the page stripes of one or more grids is provided. The
scratchpad memory for each page grid, for example, the page
grid 300 (FIG. 3) is set to zero when the first page stripe
encode of the page grid is started. Whenever new information
bits are assigned to a grid codeword in the stage 516, the
current value of the scratchpad for that codeword is read and
loaded as the state of a Reed-Solomon encoding linear feed-
back shift register (LFSR). The new data is shifted into the
LFSR, and the revised state written back to scratchpad
memory. These LFSR operations can be done in a single cycle
or in multiple cycles so that the grid parity can be calculated
and updated as page stripes are processed. After the grid
codewords for the page grid have been fully calculated, that
is, finalized, the process proceeds to the stage 520.

In the stage 520, the grid parity is read from the scratchpad
memory, and inserted into journaling cell slots allocated
within the page grid, which can still be maintained in RAM at
this point in the process. The grid parity is passed back to the
stage 512, in which the grid parity is treated as if it were user
data. In one embodiment, the content of a journaling cell
holding grid parity corresponds to the information portion of
a grid codeword protected by ECC parity known as primary
parity over grid parity. However, the grid parity can be broken
up into sections of different lengths than the ones used for
user data.

In the stage 512, the primary parity over grid parity is
calculated over these grid parity bits. The amount of primary
parity calculated over the grid parity corresponds to the gear
selected for the page stripe in which those journaling cells are
stored. The output of the stage 512 is then provided to the
stage 530.

In the stage 530, the process distributes the data among the
nlanes ofthe SSD to which the data will ultimately be written.
The lanes can be parallel data buses to which the flash devices
ofthe SSD are connected. In one embodiment, each lane is an
8 bit wide open NAND flash interface (ONFI) bus or a
TOGGLE bus. The distribution of data can be done a variety
of' ways. For example, bit interleaving can be used to distrib-
ute the data. In another example, a first received byte can be
allocated to a first lane, a second received byte to a second
lane, a third received byte to a third lane, a fourth received
byte to a fourth lane, a fifth received byte back to the first lane,
and so on, to distribute the data among the lanes in a manner
similar to a card dealer dealing cards to players. The distri-
bution of the data can be by, for example, splitting a 32-bit
data bus into four separate 8-bit buses, one to each of four
protocol controllers 214. In another embodiment, sequen-
tially received data can be used to fill one entire page (or
integer fraction) of a page stripe, and then continue on to fill
the next page (or integer fraction) of the page stripe, and so
forth. The process advances from the stage 530 to the stage
532.

In the stage 532, the process performs the writing to the
flash memory. It should be noted that data can be written
sequentially to the data or cache register of a flash device, so
long as the previously written data is not being changed.
Alternately, a complete page stripe of data can be accumu-
lated in a data buffer in the controller prior to any write
commands being issued. In addition, when writing relatively
large amounts of data, it can be desirable to perform write

5

10

15

20

25

30

35

40

45

50

55

60

65

26

operations in parallel. For example, a flash memory die can
have multiple planes that can be written at the same time.
Thus, there can be multiple areas of memory set aside for
buffers for page stripes and for tertiary parity calculation.
Data Reading and Recovery

FIG. 6 illustrates an example of a process for decoding with
primary parity. It will be appreciated by the skilled practitio-
ner that the illustrated process can be modified in a variety of
ways. For example, in another embodiment, various portions
of'the illustrated process can be combined, can be rearranged
in an alternate sequence, can be removed, or the like.

The process begins in a stage 602 in which the process
receives a request for a logical block of data. The request can
come from a host. The process advances from the stage 602 to
a stage 604. In the stage 604, a journaling engine 208 (FIG.
2A) can determines the page stripe(s) on which it resides. For
example, the logical block can be associated with ajournaling
packet, which can be stored in one or more journaling cell
slots. A lookup table can be used to locate the physical address
corresponding to the logical block. The process advances
from the stage 604 to a stage 606.

In the stage 606, the process refers to a lookup table to
retrieve the gear associated with the page stripe correspond-
ing to the logical block. In embodiments in which the jour-
naling packet can be split among two or more journaling cell
slots, which can be split among two or more page stripes, one
entry can be made to stage 606 for each journaling cell in the
journaling packet. The process can also optionally retrieve the
flash state in the stage 606 for decoding of LDPC codes as will
be explained later in a stage 612. Of course, if a different type
of primary ECC are used, the particulars of FIG. 6 associated
with the LDPC code need not be performed. The process can
also enter the stage 606 via a stage 608 in which data is
requested without association with a logical block. This can
occur during, for example, built in self test (BIST), direct
physical addressing, or as part of retrieval of grid parity data.
The process advances from the stage 606 to a stage 610.

In the stage 610, the process reads the requested data and
the corresponding parity information. For example, a journal-
ing cell can contain the information bits for a primary code-
word, and the associated primary parity contains the parity
bits of the primary codeword. The process advances from the
stage 610 to the stage 612.

In the illustrated embodiment, an LDPC code with as-
needed soft decision decoding is used for the primary ECC.
However, other codes, such as a BCH code or a two-dimen-
sional quick-release code can alternatively be used. Other
error correction codes will also be applicable. In one embodi-
ment, the primary ECC should be capable of providing cor-
rected errors on the media for at least 99% of requests, and
should also have a relatively low likelihood (such as 1 in
1E20) of false correction. This likelihood is maintained by
controlling the threshold at which page stripes are movedto a
different gear.

In the stage 612, the process generates a-priori LLR esti-
mates based on previously determined statistical behaviors of
the flash. The process advances from the stage 612 to a stage
614. In the stage 614, the process performs an initial decode
of'the primary ECC using hard-decision data and the a-priori
LLR estimates. The process advances from the stage 614 to a
stage 616.

In the stage 616, the process determines whether the pri-
mary error correction of the stage 614 was performed with
high degree of confidence that the error correction is without
error. In the stage 616, the process can check whether a
decode was successful or not by a combination of CRC and
parity-node checks. If it is determined that the error correc-

US 9,081,701 B1

27

tion decoding was performed without high confidence, the
process proceeds from the stage 616 to the stage 618. Other-
wise, for example, if there were zero or more errors and any
errors were corrected with high confidence, the process pro-
ceeds from the stage 616 to a stage 620.

In the stages 618, 622, 624, the process collects additional
soft information by additional reads with different flash
parameters, and the process uses that additional soft informa-
tion to improve its likelihood of a successful decode. The
process can return back to the stage 618 to continue trying to
decode with different flash parameters until either correction
is achieved with high confidence in a stage 626 or a stopping
criterion is reached in a stage 628. The determination of high
confidence in the stage 626 can be the same as in the stage
616. In one example, a stopping criterion can be reached if at
least one of the following is true: (a) a loop counter has
reached a predetermined limit, that is, a maximum iteration
limit; or (b) no new corrections were made for the stage 624;
or (¢) the changes performed in two successive executions of
the stage 624 were the same. If the correction is performed
with high confidence, the process proceeds from the stage 626
to the stage 620. Otherwise, if the iterative loop exits via the
stage 628 due to a stopping criterion being reached, the pro-
cess advances to a stage 630 for grid decoding as the primary
ECC could not provide reliable data by itself.

In the stage 620, the requested data can be provided to the
host and indicated as correct. Of course, if the requested data
corresponds instead to grid parity, the grid parity can be
provided to the ECC encoder/decoder 210 (FIG. 2A).

FIG. 7 illustrates a process for decoding a page grid using
grid parity. A grid decoder performs correction on all grid
codewords that intersect with a failing primary codeword.
Any primary codeword that has corrections made to it is
re-decoded with the primary decoder. This operation can
proceeds iteratively, according to the established principles of
turbo decoding, until the original requested data from 702 is
decoded with high confidence, or a stopping criterion such as
a maximum number of iterations is reached. It will be appre-
ciated by the skilled practitioner that the illustrated process
can be modified in a variety of ways. For example, in another
embodiment, various portions of the illustrated process can
be combined, can be rearranged in an alternate sequence, can
be removed, or the like.

The process begins in a stage 702 due to a failed primary
decode, such as from stage 630 of the process of FIG. 6. The
process advances from the stage 702 to stages 704, 706, 708
to read each page stripe in the page grid corresponding to the
logical block that failed to primary decode properly, except
for those with a capacity of zero. Stage 704 generates one
entry to block 608 per page stripe in the page grid, while the
output of 708 can correspond to 620 (High Confidence) or
630 (Failure). A primary decoder of the ECC encoder/de-
coder 210 (FIG. 2A) performs ECC correction on each such
page stripe, and stores the resulting data into a temporary
page grid in the RAM 206 (FIG. 2A). There should be at least
one page stripe with a primary codeword that failed to decode
properly. The resulting data, whether corrected decoded or
not at the primary level, is stored into the temporary grid
memory. The process advances from the stage 708 to a stage
718.

In the stage 718, the process evaluates whether the previ-
ously failed primary codeword had been corrected with con-
fidence. The criterion discussed earlier in connection with the
stage 616 (FIG. 6) can be reused. If the previously failed
primary codeword has been corrected with confidence, the
process proceeds from the stage 718 to the stage 720 to
release the requested the corrected data. Otherwise, the pro-

10

15

20

25

30

35

40

45

50

55

60

65

28

cess advances from the stage 718 to a stage 719 to evaluate a
stopping criterion. If the stopping criterion has not yet been
met, the process proceeds to a stage 710.

In the stage 710, the process performs interleaving to rear-
range the page grid data into grid codewords to match the
interleaving used when the grid parity had previously been
encoded in the stage 516 (FIG. 5). The process advances from
the stage 710 to a stage 712. In the stage 712, the grid code-
words are temporarily stored in the RAM 206 for grid decod-
ing. The process advances from the stage 712 to a stage 714 in
which the ECC encoder/decoder 210 performs decoding of
the grid codewords. For example, the decoding can be the
decoding of Reed-Solomon codewords. In one embodiment,
the grid ECC is a Reed-Solomon with T>16, or in an alterna-
tive embodiment, the grid ECC is an LDPC with an embedded
CRC check. In one embodiment, the primary LDPC decoder
adjusts error likelihood estimations (LLLRs) to reflect the out-
come of the grid decoding, setting higher confidence on bits
which were part of successtully corrected by the grid decoder,
and lower confidence on those which were part of uncorrect-
able grid codewords. Similarly, if the number of symbols in a
grid codeword which intersect with failing primary code-
words is less than the erasure capability of the grid codeword,
the grid decoder can advantageously treat those symbols as
erasures. The process advances from the stage 714 to a stage
716.

In the stage 716, the process de-interleaves the corrected
block data of the grid codewords to return to the native format
of the page grid, which can be maintained in RAM. The
previously failed one or more primary codewords can then be
readily read from this reconstructed page grid. The process
returns from the stage 716 to the stage 708 to perform further
primary decoding with the reconstructed page grid. The pro-
cess can continue to iteratively correct errors in accordance
with the principles of turbo decoding until the requested
journaling cell(s) have been successfully decoded (stage 720)
or a stopping criterion is reached 719, such as the stopping
criterion described earlier in connection with the stage 628
(FIG. 6). If the stopping criterion is reached, the process exits
with a failure 730.

FIG. 8 illustrates an example of storing data. It will be
appreciated by the skilled practitioner that the illustrated pro-
cess can be modified in a variety of ways. For example, in
another embodiment, various portions of the illustrated pro-
cess can be combined, can be rearranged in an alternate
sequence, can be removed, or the like.

The process begins at a stage 802 and retrieves the location
of'the next page stripe to be written into, which can be corre-
spond to, for example, incrementing a counter for the page
stripe number. The page stripe can be maintained in RAM
until it is ready to be written to flash. If the journaling cell
capacity of the next page stripe is zero 804, that is, the next
page stripe is associate with gear zero, a new next page stripe
is selected 802/804 until the next page stripe with non-zero
journaling cell capacity is found.

User data is received and de-cached as necessary for access
806. In one embodiment, journaling packets are used to
arrange 808/809 the data, and a logical block fits into the
journaling packet. In one embodiment, the journaling packet
is not used. The journaling packet is then arranged into one or
more journaling cells. In one example, a journaling packet is
split up into two journaling cells. If the journaling cell is not
full, the process can return to the stage 806 to receive more
data. When the journaling packet is at least as large as the
journaling cell, the journaling cell should be full in the stage
810.

US 9,081,701 B1

29

In the stage 812, if the journaling cell slot is the last one for
user data (last one meaning that there is no more space for
other journaling cells of user data), the process advances to
the stage 814. Otherwise, the next journaling cell and slot is
selected for allocation of data 816 and the process returns to
the stage 806.

In the stage 814, the process determines whether or not the
current journaling cell slot is the last one for user data within
the page grid (last one meaning that there is no more space for
other journaling cells of user data). If so, the process advances
to from the stage 814 to the stage 828. If not, then it is merely
the last one for the a page stripe and the process advances
from the stage 814 to the stage 818 to calculate primary parity,
to the stage 820 to update grid parity, to the stage 822 to
program the page stripe, and to the stage 824 to update any
virtual/physical mapping tables, such as a table indicating the
mapping of a logical block address to a page grid, page stripe,
and journaling cell. The stages 820 and 822 can be inter-
changed in order or performed in parallel.

In the stage 830, the process finalizes the grid parity, then
advances to a stage 832 and iterates through stages 834, 836
to arrange grid parity into journaling cell slots. When the
journaling cells for the journaling cell slots are full, the pri-
mary parity 838 is calculated over the journaling cells for the
grid parity, and the page stripe is programmed 840. If jour-
naling cells containing user data are present in the page stripe,
the virtual/physical mapping table can be updated 841.

In astage 842, the process determines the last page stripe of
the page grid has been programmed. If so, the process
advances to the stage 850. If not, the process finds the next
page stripe via the stage 844, 846 and returns to the stage 832.

In the stages 850, 852, 854, 856, the process determines
whether the page grid just programmed is the last page grid of
the block grid 850, in which case a new page grid from a new
block grid is selected 852, 854. Otherwise, a new page grid
from the current block grid can be selected. After the new
page grid 856 is selected, the process is reading for program-
ming the next page stripe of the new page grid.

FIG. 9 illustrates a process that the journaling engine 208
can perform to execute write requests. FIG. 10 illustrates a
data flow diagram of the same. It will be appreciated by the
skilled practitioner that the illustrated process can be modi-
fied in a variety of ways. For example, in another embodi-
ment, various portions of the illustrated process can be com-
bined, can be rearranged in an alternate sequence, can be
removed, or the like.

Whenever a host or other process wishes to write data to a
storage array, it supplies the data in a fixed-size allocation
block along with a virtual address or logical address that
identifies that piece of data, such as a block stripe, which is
made up of the blocks that correspond to a page stripe, to that
host. These writes are added to a write command queue 901.
The journaling engine takes write requests 902 from the write
command queue 901. The journaling engine 208 maintains a
current page stripe buffer 913 it is journaling into, as well as
a next page stripe buffer 914. The payload capacity of each
depends on the gear, which is specified in the page stripe
record 915. Typically, the payload capacity of a page stripe
will be much larger than the size of an allocation block, so that
several allocation blocks can be written into a page stripe
buffer. At the stage 903, the journaling engine temporarily
stores the allocation block in the current page stripe buffer
913, which can be implemented in volatile memory, such as
RAM. If the allocation block runs over the end of the page
stripe payload, the remaining portion can be assigned to the
next available page stripe and temporarily stored in the next
available page stripe buffer 914. The journaling engine

40

45

55

30

records the physical location or locations of the data in the
virtual (logical) to physical translation table 1204. If the
current page stripe is considered to be full 905, then in a stage
906 the journaling engine issues a command 502 to the ECC
to encode and write the current page stripe to the flash array.
It will be understood that the payload portion of a current page
stripe can be considered to be full when it is less than full. For
example, if the payload portion of current page stripe is nearly
full, such as within a few bytes of being full, the performance
of the memory will be improved by not splitting a next allo-
cation block across two different page stripes. When journal-
ing cells are used, it can be desirable not to split a journaling
cell across multiple page stripes or page grids. Accordingly,
there can be a remaining portion of a page stripe that goes
unused when it is considered to be full. If the current page
stripe is considered full, or if the remaining journaling cell
capacity of the page grid (exclusive of any journaling cell
slots reserved for grid parity) is less than 1 full journaling
packet, then in a stage 906 the contents of the current stripe
buffer are written to flash. The process proceeds to a stage
907. In stage 907, the process moves the record of the current
page stripe into the list of full page stripes within the list of full
block grids 911. As long as the page grid has capacity for at
least one more journaling packet, then in a stage 908, the next
page stripe buffer 914 becomes the current page stripe buffer
913. In Stage 920, the process assigns the subsequent page
stripe within the page grid to be the “Next Stripe” which will
receive the data stored in the Next Stripe Buffer 914. The
capacity of the assigned page stripe is recorded, not including
any journaling cell slots allocated to grid parity. If that sub-
sequent page stripe has a capacity of zero journaling cells as
determined in Stage 924, then it is skipped; otherwise the
process is complete (932) until the next Write Request (902)
arrives.

If, after stage 907, the remaining page grid capacity is less
than one journaling packet, exclusive of cell slots reserved for
grid parity, the page grid is considered to be full. In a stage
926, grid parity is calculated and stored as described earlier in
connection with FIG. 8. It is readily understood that, in prac-
tice, calculation of the grid ECC is done incrementally as the
data passes through, with the partial result stored in a local
buffer. The process advances to stages 928-929, in which the
first two page stripe of a next Page Grid is selected, skipping
any which have a capacity of zero journaling cells. The pro-
cess advances to a stage 932, in which it waits for an addi-
tional write request 902 to arrive.

Once the stage 932 is reached, the write request is com-
plete. During writes, the journaling engine 208 also checks in
the stage 904 to see ifthere is existing data in the storage array
corresponding to the virtual address being overwritten by the
operation. If so, it marks the physical address for the previous
data as “invalid,” as flash cannot be overwritten.

FIG. 10 will be discussed later in connection with FIG. 13.
FIG. 11 illustrates a process of initialization. It will be appre-
ciated by the skilled practitioner that the illustrated process
can be modified in a variety of ways. For example, in another
embodiment, various portions of the illustrated process can
be combined, can be rearranged in an alternate sequence, can
be removed, or the like.

In stage 1102, it is desired that part or all of a set of storage
media be initialized and made ready for use. Advantageously,
this process can make use of the gear structures and ECC
blocks described earlier in connection with FIGS. 5 and 6, and
elsewhere in this disclosure. In a stage 1104, page stripes are
initialized to the gear with the greatest error correction capac-
ity. The process advances to a stage 1106. In a stage 1106, a
bad block table is read from the media location specified by

US 9,081,701 B1

31

the manufacturer. The process advances to a stage 1106.
Optionally, in a stage 1108, all page stripes that intersect with
bad blocks are set to a capacity of zero. The process advances
to a stage 1110, in which all blocks to be initialized are erased.

Next, in a stage 1112, each page stripe is programmed with
journaling cells containing pseudorandom test data, such as
the output of a scrambler, protected by the ECC selected in
Stage 1104. In a stage 1114, the first page stripe in the storage
medium is selected. In a stage 1116, that page stripe is read,
and decoded according to the ECC gear selected in stage
1104. If the decode is successful, then the data integrity status
of'the media is estimated in a step 1120, based at least on the
number of bits corrected, optionally along with other infor-
mation such as the number of processing steps required to
decode. Based at least on this information, in a stage 1122, the
page stripe is assigned the highest-code-rate gear for which
the predefined thresholds are met.

If'the decode was not successful, then the process advances
to a stage 1124 in which the page stripe is assigned a capacity
of zero (Gear 0). The process starting at 1116 is repeated for
every page stripe of every page grid of the media region being
initialized.

FIG. 12 illustrates the operation of a virtual/physical trans-
lation table, which is used by the journaling engine 208 (FIG.
2A). It will be appreciated by the skilled practitioner that the
illustrated process can be modified in a variety of ways. For
example, in another embodiment, various portions of the
illustrated process can be combined, can be rearranged in an
alternate sequence, can be removed, or the like.

Whenever a host wishes to write data to a storage array, the
host supplies the data in a fixed-size allocation block along
with a virtual address 1201 that identifies that piece of data to
the host. The journaling engine 208 finds an empty region for
a write location 1202 to the storage array, and issues com-
mands for the data to be written to that area. The journaling
engine 208 updates the virtual to physical translation table
1204 with the physical address or addresses 1207 correspond-
ing to the virtual address 1201. If the virtual address was
previously mapped to a physical address in a full block 1203,
that physical address is marked as “invalid.” The pointer to the
next valid write location 1202 is advanced. When the pointer
reaches the end of the current block grid, the pointer is
advanced to the next block grid 1205. The journaling engine
208 maintains a supply of available blocks 1206 by erasing
and reclaiming blocks, an example of which was described in
connection with FIG. 16 of related application Ser. No.
13/477,845 filed on May 22, 2012, which is incorporated by
reference herein.

Determining the Failure of a Flash Region

FIG. 13 illustrates a process for failure recovery. It will be
appreciated by the skilled practitioner that the illustrated pro-
cess can be modified in a variety of ways. For example, in
another embodiment, various portions of the illustrated pro-
cess can be combined, can be rearranged in an alternate
sequence, can be removed, or the like. The illustrated process
is described in further detail in connection with FIG. 10,
which follows this description of FIG. 13.

Determination of the failure of a flash die, plane, or block
can be a firmware function that finds correlation between
failures reported by the primary ECC on multiple page stripes
having a common block, plane, or die address. Particular error
signatures may be used to assist in the identification, such as
a relatively high proportion of ECC codewords failing, a
relatively high proportion of LDPC parity nodes failing, all-
zeroes patterns, or all-ones patterns. Such patterns tend to be
inconsistent with normal random errors being the cause of an
uncorrectable codeword.

10

15

20

25

30

35

40

45

50

55

60

65

32

When a flash die is determined to have failed, the block
grids that intersect that die should be scheduled for reclama-
tion on a priority basis.

Each block grid comprises a number of page grids and are
related to the page grids in the manner that a block is related
to pages. In flash memory, a block comprises the smallest
eraseable unit. Data is read from each page grid in the normal
way, and valid data is journaled into available page grids.
Gear settings for non-failed page grids are updated as normal.

The page stripe on the failed die is treated as an erasure
according to the known principles of erasure decoding, and
grid parity is used to rebuild its contents, as well as to fix any
uncorrectable primary codewords in non-failed page stripes.
The valid parts of the rebuilt data are journaled into available
page stripes.

The gear setting for the page stripe on the failed die is set to
zero, and the remaining capacity of the page grid is calcu-
lated. If this capacity is below a predetermined threshold, the
page grid as a whole may be removed from use.

Once all valid data on all page stripes of the block grid have
been journaled into new locations on the flash, and all gear
updates have been made, the blocks of the block grid are
erased. The block grid, with updated gears, is returned to the
list of available block grids. The next time it is used, all stripes
on the failed die will have size zero, and therefore by defini-
tion are error-free. The full recovery capability of the grid will
be available for subsequent failures.

Recovering from the Failure of a Flash Plane, Block, or Page

If one or more planes on a flash die is determined to have
failed, then the procedure for a failed die should be followed
for each page grid that intersects a failed plane.

If one or more blocks on a flash die is determined to have
failed, then the procedure for a failed die should be followed
for each page grid that intersects a failed block.

If one or more pages on a flash die is determined to have
failed, then the next time the page grid is reclaimed, the page
stripe containing that page must be given a capacity of 0.

FIG. 10 provides a structural view of the circuitry used
during the failure recovery described in FIG. 13. When a
Failed Die Detection Circuit 1002 indicates a die has failed, a
process 1008 calculates the index of affected block grids.
These go into a the FIFO for reclamation of Block Grids
1012, which may be a high priority queue similar to one used
in normal reclamation (‘Garbage Collection’). Alternately, if
acircuit determines an individual block has failed (1004) then
only one block grid will be affected; that block grid index
enters the FIFO 1012. Similarly, if a particular page is deter-
mined to have failed, then the index one block grid containing
the failed page will enter the FIFO 1012.

A Block Grid Reclamation Circuit 1030, which may also
perform normal reclamation (‘Garbage Collection’) recovers
the contents of each Page Grid of the Block Grid, using a
procedure described in FIG. 6. In one implementation, Page
Stripe Read Requests 608 are used, at least for failed page
stripe(s). The error/erasure decoder 1034 performs correction
operations including operations described earlier in connec-
tion with FIGS. 6 and 7.

The Block Grid Reclamation Circuit 1030 makes use of a
data store 1020 to hold any valid journaling packets that need
to be stored into new locations. It makes use of the Logical/
Physical Mapping Table 1022 at least to determine which
journaling packets are valid. It makes use of the Physical
Status Table 1024 at least to determine the gear of page stripes
to be read, and updates it based on statistics captured during
decoding. It sets failed page stripes to Gear 0, and recalculates
the capacity of each page grid.

US 9,081,701 B1

33

The journaling engine 208 allocates reclaimed valid jour-
naling packets from 1020 into new locations using procedures
described earlier in connection with FIG. 8 and FIG. 9. It
selects new locations from the list of Available Block Grids,
Page Grids, and Page Stripes 912. It updates the Logical/
Physical Mapping Table 1022 with the new locations of these
journaling packets. Once all valid data from a Block Grid has
been committed to a new location, the Block Grid Reclama-
tion Circuit erases the media associated with the Block Grid,
and returns the Block Grid to the Available Block Grid List
912. Advantageously, even block grids containing multiple
failed dies, blocks, or pages can continue to be used normally,
except for the affected page stripes being set to a capacity of
Zero.

FIG. 14 illustrates a process for re-evaluation. It will be
appreciated by the skilled practitioner that the illustrated pro-
cess can be modified in a variety of ways. For example, in
another embodiment, various portions of the illustrated pro-
cess can be combined, can be rearranged in an alternate
sequence, can be removed, or the like.

The process starts at step 1402, in which a page stripe is
being reclaimed. The reclamation process proceeds in 1404,
wherein any valid data on the stripe is read, error correction is
performed, (possibly including grid decoding), and the cor-
rected valid data is journaled to a new location. Based at least
onthe outcome 0f 1404 or on information previously stored in
a Physical Status Table 1418, a decision is made in step 1406
whether the page must be retired (such as by setting its capac-
ity to 0). If so, then if (1408) the flash media is MLC such that
the page stripe is bonded with other page stripe(s), then in step
1410 the bonded pages are determined based on the stored,
manufacturer-supplied bonding table for that flash media. In
step 1414 page stripes identified in page 1410 are flagged for
gear re-evaluation in a local memory. At stage 1416, the page
stripe capacity is set to 0, and the page stripe is ready to be
erased, pending the rest of the block stripe being similarly
ready. Page stripes which, at stage 1408, have no bonded
pages can skip directly to step 1416.

Subsequently, when the bonded page stripes are reclaimed
(1402, 1404) then as long as they are not also retired (1406)
then their flag for re-evaluation will be observed at step 1430.

Page stripes flagged for re-evaluation at step 1430 go to a
step 1432, in which their data integrity status is re-evaluated
de novo in a step 1432, based at least on the number of bits
corrected, optionally along with other information such as the
number of processing steps required to decode. Based at least
on this information, in a stage 1434, the page stripe is
assigned the highest-code-rate gear for which the predefined
thresholds are met. In a step 1436, at least a Physical Status
Table may be updated based on the new, potentially higher-
capacity gear. The page stripe can then be ready to be erased
(1420), pending the rest of the block stripe being similarly
ready.

Page stripes that are not flagged for Gear 0 (1406) or
re-evaluation (1430) are checked to see if a previous process
has marked them for an increase in gear, for increased ECC
protection at the cost of a lower journaling cell capacity. If so,
then the physical status table is updated with the next lower
gear (1442, 1444) and the page stripe can be ready to be
erased (1420), pending the rest of the block stripe being
similarly ready.

Reclaimed page stripes with no changes flagged can be
ready to be erased (1420), pending the rest of the block stripe
being similarly ready.

FIG. 15 illustrates an example of logical to physical map-
ping. It will be appreciated by the skilled practitioner that the
illustrated process can be modified in a variety of ways. For

10

15

20

25

30

35

40

45

50

55

60

65

34

example, in another embodiment, various portions of the
illustrated process can be combined, can be rearranged in an
alternate sequence, can be removed, or the like. The illus-
trated process can be used to locate a physical address for a
journaling cell slot for a read operation. For a write operation,
the physical address can be updated using a pointer.

In the embodiments illustrated earlier, a lookup table
included enough information to retrieve the journaling cell
slot’s physical address. For example, the lookup table can
include the page grid number (if there is more than one page
grid), the page stripe number, and a journaling cell slot num-
ber. These numbers can be associated with address offsets.
However, if it is desired to keep the size of the lookup table
smaller, for example, the page stripe number does not need to
be stored in the lookup table.

In the stages 1502, 1504, the process receives a logical
address, such as a logical block address, and retrieves a page
grid address and a journaling cell slot number. If journaling
packets are used and there are more than one journaling cell
slots used to store a journaling packet, the journaling cell slot
number can correspond to the first journaling cell slot that is
used to store the journaling packet. In the stage 1506, the
process initializes to zero, counts of variables for a journaling
cell slot relative to the page grid (j.c.s.p.g.), journaling cell
slot relative to the page stripe (j.c.s.p.s.), and a page stripe
(p.s.). The value of O can indicate the first of each, for
example, the first journaling cell slot can have a count of 0.

The process retrieves the gear 1508 for the current page
stripe, and the process determines the maximum number
1510 of journaling cell slots in the current page stripe based
on the gear. If gear zero is indicated, the process proceeds
from the stage 1512 to a stage 1514, in which the process
increments the page stripe counter and returns to the stage
1508. If gear zero is not indicated, the process proceeds from
the stage 1512 to a stage 1515.

In the stage 1515, the process determines whether the
variable j.c.s.p.g. matches with the journaling cell slot num-
ber from the lookup table. If so, the physical address can be
determined by combining 1516 the various offsets based on
the page grid address, page stripe offset, and the journaling
cell offset based on their respective counts. Otherwise, the
process proceeds from the stage 1515 to a stage 1518.

The variable j.c.s.p.s. holds the journaling cell slot number
within the current page stripe. Ifthe variablej.c.s.p.s. matches
the maximum value from the stage 1512, the process clears
1522 the j.c.s.p.s. to zero, increments 1514 the page stripe
counter, and returns to the stage 1508 to evaluate the next
page stripe. If the variable j.c.s.p.s. has not reached its maxi-
mum value, the process proceeds from the stage 1518 to a
stage 1520 in which the process increments both the j.c.s.p.g.
and the j.c.s.p.s. counts and returns to the stage 1515.
Reevaluation of Page Stripes when a Related Page is Retired

In multi-level cell flash, two or more bits of information are
stored in the same physical flash cell, by means of multi-level
coding. Typical arrangements are four levels encoding 2 bits
per cell (called MLC-2, or simply MLC) and eight levels
encoding 3 bits per cell (called MLC-3, or TLC). Typically,
the flash is structured and programmed so that each of the bits
encoded to a given physical flash cell is addressed with the
same bit index, but a different predetermined page index.
Thus each page index may have other related page index(es)
which address the other bits of the physical cells it maps to.

Programming the related pages (and thus the constituent
related bits) of a page ‘Px’ can have the effect of increasing the
characteristic BER observed on Px. Conversely, if a related

US 9,081,701 B1

35

page or pages are not programmed (or, alternately, pro-
grammed with a fixed pattern) then the characteristic BER
can go down.

Therefore, in the context of an adaptive, multi-rate ECC
scheme as disclosed herein, whenever a pages is retired (such
as by setting its capacity of zero) it can be useful to re-evaluate
the ECC requirements of the bonded page stripes, and possi-
bly reduce the ECC requirements in favor of increased capac-

1ty.
EXTENSIONS AND VARIATIONS

The choice of page stripes being four lanes wide is a bal-
anced and convenient choice. However, page stripes of other
widths for example, as narrow as one page or as wide as 16
pages, are also applicable. Arranging the flash pages on four
parallel lanes provides good latency for partial reads, and
efficient sharing of the flash interface. However, the prin-
ciples and advantages described herein are still applicable if
the page stripe is distributed over many dice on the same lane,
on a random selection of four lanes within a large multi-lane
access system, or any combination thereof.

Reading a minimum amount from the flash memory nec-
essary to decode the user-requested part of the page stripe,
and doing a follow-up read of the entire page stripe when
required is one approach. Another approach that also works is
to transfer the entire page stripe during the initial read, start-
ing with that initial minimal set, but continuing on to read the
remainder rest of the page stripe, and wrapping around to the
beginning of the page stripe, and continuing on until the entire
page stripe is available. In parallel, the initial ECC decode
operation is performed. If the quick-release ECC is success-
ful, the transfer of the remaining bytes of the stripe can be
aborted. If the quick-release is not successful, then the
decoder can wait until the rest of the page stripe is available,
and completes the decode operation.

The principles and advantages disclosed herein are appli-
cable to flash drives that emulate hard disk drives. Various
forms of flash drives include, but are not limited to: solid-state
drives (whether SCSI, SATA, or PCI attached), solid-state
caching or tiering devices, enterprise flash drives, hybrid
drives (hybrids of hard disk drives and flash drives), flash
memory cards, flash memory sticks, thumb drives, backup
drives, or the like. For example, various aspects can be incor-
porated into a solid-state drive controller chip. Alternatively,
various aspects can be incorporated with the host, such as, by
being incorporated into the same motherboard with other
components of the host. A flash translation layer permits a
flash drive to emulate a hard disk drive by transferring data to
and from the host in allocation blocks. The host can use any of
many different file systems, such as, but not limited to: New
Technology File System (NTFS), File Allocation Table
(FAT), FAT32, High Performance File System (HPFS), Ext2,
Ext3, Ext4, Hierarchical File System (HFS), HFS Plus
(HFS+), or the like. The host or host computer can be, for
example, but not limited to, an enterprise server, a web server,
a mobile base station, a host bus adapter, an IP router, a home
server, a file server, a workstation, a data logger, a digital
video recorder, a smart TV, a media center, a jukebox, a smart
phone, a mobile phone, a personal digital assistant, a personal
computer, a laptop computer, a tablet computer, a video gam-
ing console, an interactive kiosk, a digital camera, a digital
video camera, a digital music player, an ebook reader, or the
like.

Various embodiments have been described above.
Although described with reference to these specific embodi-
ments, the descriptions are intended to be illustrative and are

10

25

30

40

45

50

55

36

not intended to be limiting. Various modifications and appli-
cations may occur to those skilled in the art.

APPENDIX A

Incorporation by Reference of Commonly Owned
Applications

The following patent applications, commonly owned and
filed on the same day as the present application, are hereby
incorporated herein in their entirety by reference thereto:

Title application Ser. No.
SYSTEMS AND METHODS FOR 13/844,448
MAPPING FOR SOLID-STATE

MEMORY

SYSTEMS AND METHODS FOR 13/844,463
STORING DATA FOR SOLID-STATE

MEMORY

SYSTEMS AND METHODS FOR 13/844,486
RECLAIMING MEMORY FOR

SOLID-STATE MEMORY

SYSTEMS AND METHODS FOR 13/844,499

ADAPTING TO CHANGING
CHARACTERISTICS OF MULTI-
LEVEL CELLS IN SOLID-STATE
MEMORY

APPENDIX B

Incorporation by Reference of Commonly Owned
Applications

The following patent applications, commonly owned and
filed on May 22, 2012, are hereby incorporated herein in their
entirety by reference thereto:

Title application Ser. No.

SYSTEMS AND METHODS FOR
ADAPTIVELY SELECTING ERROR
CORRECTION CODING SCHEMES IN
A FLASH DRIVE

SYSTEMS AND METHODS FOR
INITIALIZING REGIONS OF A
FLASH DRIVE HAVING DIVERSE
ERROR CORRECTION CODING
(ECC) SCHEMES

SYSTEMS AND METHODS FOR
ADAPTIVELY SELECTING AMONG
DIFFERENT ERROR CORRECTION
CODING SCHEMES IN A FLASH
DRIVE

SYSTEMS AND METHODS FOR
REDUNDANTLY STORING ERROR
CORRECTION CODES IN A FLASH
DRIVE

SYSTEMS AND METHODS FOR LOW
LATENCY, HIGH RELIABILITY
ERROR CORRECTION IN A FLASH
DRIVE

SYSTEMS AND METHODS FOR
TRANSPARENTLY VARYING
ERROR CORRECTION CODE
STRENGTH IN A FLASH DRIVE
SYSTEMS AND METHODS FOR
TRANSPARENTLY VARYING
ERROR CORRECTION CODE
STRENGTH IN A FLASH DRIVE
SYSTEMS AND METHODS FOR
RECLAIMING FLASH BLOCKS OF A
FLASH DRIVE

13/477,600

13/477,633

13/477,629

13/477,598

13/477,595

13/477,568

13/477,599

13/477,845

US 9,081,701 B1

37

-continued

Title application Ser. No.

SYSTEMS AND METHODS FOR 13/477,635
REDUNDANTLY STORING DATA IN

A FLASH DRIVE SUCH THAT A

FAILED PAGE CAN BE TOLERATED

SYSTEMS AND METHODS FOR 13/477,601
RECOVERING DATA FROM FAILED

PORTIONS OF A FLASH DRIVE

What is claimed is:

1. An electronically-implemented method of retrieving
user data, the method comprising:

receiving a logical address and a read request for the user

data;

determining a journaling cell slot, a first page stripe, and a

page grid corresponding to the logical address, wherein
the page grid comprises a plurality of related page
stripes including the first page stripe, wherein the page
stripes of the page grid are related by having a grid error
correction code having codewords spanning the page
grid, wherein a page stripe of the plurality of related
page stripes comprises a plurality of pages or integer
fractions thereof, wherein the journaling cell slot is allo-
cated to the first page stripe;

retrieving information indicative of a capacity of journal-

ing cell slots per page stripe of the page grid, wherein the
capacity is zero for at least a second page stripe of the
page grid;

identifying data corresponding to the at least second page

stripe as identically zero for a decoder of the grid error
correction code;
retrieving data from a set of page stripes of the page grid
having non-zero journaling cell slot capacity, wherein
page stripes having non-zero journaling cell slot capac-
ity each have a primary error correction code within the
page stripe;
performing error correction within the page stripes of the
page grid having non-zero journaling cell slot capacity;

decoding the grid error correction code to correct errors
throughout the page grid to generate a first corrected first
page stripe;

performing primary error correction on the first corrected

first page stripe to generate a second corrected first page
stripe; and

providing the user data from the journaling cell slot of the

second corrected first page stripe.
2. The method of claim 1, further comprising iterating the
following until at least the first corrected page stripe decodes
successfully or until a stopping criterion is reached:
performing error correction within page stripes of the page
grid having non-zero journaling cell slot capacity; and

decoding the grid error correction code to correct errors
throughout the page grid to generate corrected or par-
tially corrected page stripes.

3. The method of claim 1, further comprising arranging
primary corrected data from the page stripes of the page grid
into grid ECC codewords for decoding of the grid error cor-
rection code.

4. The method of claim 1, further comprising marking as
erasures, the data of primary codewords that were not suc-
cessfully decoded, for performance of grid error correction.

5. The method of claim 1, wherein if a page stripe of the
page grid is determined to have failed, grid codeword sym-
bols corresponding to locations in the failed page stripe are
marked as erasures for the purpose of grid error correction.

15

20

25

30

35

40

45

50

55

60

65

38

6. The method of claim 1, further comprising:

at least prior to retrieving data from the set of page stripes
of the page grid having non-zero journaling cell slot
capacity:
reading data stored in the journaling cell slot and a
corresponding primary error correction code, wherein
the primary error correction code is protective of
errors within the first page stripe; and

attempting to perform a first error correction decoding
on at least a user data portion of the read data using
only the primary error correction code, wherein the
attempt results in a failure to error correction decode
the user data portion correctly.

7. The method of claim 1, further comprising:

associating the logical address with a page grid address and
a grid journaling cell slot number, the page grid address
identifying a page grid, the page grid comprising a plu-
rality of page stripes, wherein each page stripe of the
page grid is associated with a page stripe number,
wherein page stripes of the page grid are programmed in
a predetermined order;

computing which page stripe number for the page grid
corresponds to the grid journaling cell slot number by
examination of journaling cell slot capacities of at least
a portion of the page strips of the page grid and the
predetermined order in which the page stripes are pro-
grammed, wherein the page stripes of the page grid are
each associated with an ECC gear selected from a set of
ECC gears, wherein at least a first page stripe is associ-
ated with a first gear such that the first page stripe has a
first non-zero journaling slot capacity, wherein at least a
second page stripe is associated with a second gear such
that the second page stripe has a second non-zero jour-
naling slot capacity different from the first non-zero
journaling slot capacity, and wherein at least a third page
stripe is associated with gear zero such that the third
page stripe has a zero journaling slot capacity;

computing a local journaling cell slot number based at least
partly on the grid journaling cell slot number, the jour-
naling cell slot capacities of at least a portion of the page
strips of the page grid, and the predetermined order in
which the page stripes are programmed, wherein local
journaling cell slot numbers uniquely identify journal-
ing cell slots within the page stripe;

generating a first offset based at least partly on the page
stripe number;

generating a second offset based at least partly on the local
journaling cell slot number and a size associated with the
journaling cell slots; and

generating a first physical address for the logical address by
combining a second physical address associated with the
page grid number, the first offset, and the second offset.

8. The method of claim 7, wherein associating the logical
address with the page grid number and the grid journaling cell
slot number is performed with reference to a lookup table.

9. The method of claim 7, wherein the first offset is gener-
ated by multiplying the page stripe number with a first pre-
determined number, wherein the second offset is generated by

multiplying the local journaling cell slot number by a second
predetermined number.

10. The method of claim 7, further comprising generating

the first physical address by adding the second physical

address, the first offset, and the second offset.

US 9,081,701 B1

39

11. An apparatus for retrieving user data, the apparatus
comprising:

a circuit configured to:

receive a logical address and a read request for the user
data;

determine a journaling cell slot, a first page stripe, and a
page grid corresponding to the logical address,
wherein the page grid comprises a plurality of related
page stripes including the first page stripe, wherein
the page stripes of the page grid are related by having
a grid error correction code having codewords span-
ning the page grid, wherein a page stripe of the plu-
rality of related page stripes comprises a plurality of
pages or integer fractions thereof, wherein the jour-
naling cell slot is allocated to the first page stripe;

retrieve information indicative of a capacity of journal-
ing cell slots per page stripe of the page grid, wherein
the capacity is zero for at least a second page stripe of
the page grid;

identify data corresponding to the at least second page
stripe as identically zero for a decoder of the grid error
correction code;

retrieve data from a set of page stripes of the page grid
having non-zero journaling cell slot capacity, wherein
page stripes having non-zero journaling cell slot
capacity each have a primary error correction code
within the page stripe; and

an ECC encoder/decoder configured to:

perform error correction within the page stripes of the
page grid having non-zero journaling cell slot capac-
1ty;

decode the grid error correction code to correct errors
throughout the page grid to generate a first corrected
first page stripe;

perform primary error correction on the first corrected
first page stripe to generate a second corrected first
page stripe; and

provide the user data from the journaling cell slot of the
second corrected first page stripe.

12. The apparatus of claim 11, wherein the ECC encoder/
decoder is further configured to iterate the following until at
least the first corrected page stripe decodes successfully or
until a stopping criterion is reached:

performance of error correction within page stripes of the

page grid having non-zero journaling cell slot capacity;
and

decoding of the grid error correction code to correct errors

throughout the page grid to generate corrected or par-
tially corrected page stripes.

13. The apparatus of claim 11, wherein the ECC encoder/
decoder is further configured to arrange primary corrected
data from the page stripes of the page grid into grid ECC
codewords for decoding of the grid error correction code.

14. The apparatus of claim 11, wherein the ECC encoder/
decoder is further configured to mark as erasures, the data of
primary codewords that were not successfully decoded, for
performance of grid error correction.

15. The apparatus of claim 11, wherein the ECC encoder/
decoder is further configured to mark as erasures, for the
purpose of grid error correction, grid codeword symbols cor-
responding to locations in the failed page stripe when a page
stripe of the page grid is determined to have failed.

16. The apparatus of claim 11, wherein:

the circuit is configured to, at least prior to retrieving data

from the set of page stripes of the page grid having
non-zero journaling cell slot capacity, read data stored in

5

10

20

25

30

35

40

45

50

55

60

65

40

the journaling cell slot and a corresponding primary
error correction code, wherein the primary error correc-
tion code is protective of errors within the first page
stripe; and
the ECC encoder/decoder is configured to, at least prior to
retrieving data from the set of page stripes of the page
grid having non-zero journaling cell slot capacity,
attempt to perform a first error correction decoding on at
least a user data portion of the read data using only the
primary error correction code, wherein the attempt
results in a failure to error correction decode the user
data portion correctly.
17. The apparatus of claim 11, wherein the circuit is further
configured to:
associate the logical address with a page grid address and a
grid journaling cell slot number, the page grid address
identifying a page grid, the page grid comprising a plu-
rality of page stripes, wherein each page stripe of the
page grid is associated with a page stripe number,
wherein page stripes of the page grid are programmed in
a predetermined order;

compute which page stripe number for the page grid cor-
responds to the grid journaling cell slot number by
examination of journaling cell slot capacities of at least
a portion of the page strips of the page grid and the
predetermined order in which the page stripes are pro-
grammed, wherein the page stripes of the page grid are
each associated with an ECC gear selected from a set of
ECC gears, wherein at least a first page stripe is associ-
ated with a first gear such that the first page stripe has a
first non-zero journaling slot capacity, wherein at least a
second page stripe is associated with a second gear such
that the second page stripe has a second non-zero jour-
naling slot capacity different from the first non-zero
journaling slot capacity, and wherein at least a third page
stripe is associated with gear zero such that the third
page stripe has a zero journaling slot capacity;

compute a local journaling cell slot number based at least
partly on the grid journaling cell slot number, the jour-
naling cell slot capacities of at least a portion of the page
strips of the page grid, and the predetermined order in
which the page stripes are programmed, wherein local
journaling cell slot numbers uniquely identify journal-
ing cell slots within the page stripe;

generate a first offset based at least partly on the page stripe

number;

generate a second offset based at least partly on the local

journaling cell slot number and a size associated with the
journaling cell slots; and

generate a first physical address for the logical address by

combining a second physical address associated with the
page grid number, the first offset, and the second offset.

18. The apparatus of claim 17, wherein the circuit is con-
figured to associate the logical address with the page grid
number and the grid journaling cell slot number with refer-
ence to a lookup table.

19. The apparatus of claim 17, wherein the circuit is con-
figured to generate the first offset by multiplying the page
stripe number with a first predetermined number, wherein the
first circuit is configured to generate the second offset by
multiplying the local journaling cell slot number by a second
predetermined number.

20. The apparatus of claim 17, further the circuit is config-
ured to generate the first physical address by adding the
second physical address, the first offset, and the second offset.

#* #* #* #* #*

